Quantitative Methods in Political Science:
 Fundamentals of Probability

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova | David M. Grundmanns

Week 2-15 September 2021

The Course

Roadmap

- Understand and model stochastic processes
- Understand statistical inference
- Implement it mathematically and learn how to estimate it
- OLS
- Maximum Likelihood
- Implement it using software
- R
- Basic programming skills

Overview: Week 2

Probability Theory
Basics and notation
Definitions
Random variables
Probability distributions
Binomial distribution
Normal distribution
The Central Limit Theorem

Quiz

Which of the following answers are true?

1. There is a tendency that the better the economy, the higher the incumbents' vote shares.
2. The graph makes transparent that we are facing a left-skewed distribution.
3. Scatterplots are invented to show the range of distribution.
4. There is a relationship of the economy and the vote shares of incumbent presidents.
5. Higher economic growth is causing the reelection of incumbent presidents.

Probability Theory

Probability Theory - Why should we care?

- Probability theory important tool to translate political science theories into appropriate statistical models.
- A preview - Three steps to generate a statistical model:
(1) What is the data-generating process (DGP)?
(2) Build an appropriate probability model that reflects the assumed DGP including assumptions of how Y is distributed (i.e., stochastic component)
(3) Come-up with systematic component including a parameterization of the stuff that gets estimated (i.e., systematic component) and theory of inference to derive statistical model
- Not necessary to fit ones data to an existing but potentially inappropriate statistical model

Basic Terminology

- An experiment is a repeatable procedure for making an observation.
- An outcome is a possible result of such an experiment.
- The sample space (Ω) of an experiment is the set of all possible outcomes.
- An event is a subset of the sample space, i.e., any set of outcomes.
- The probability of an event is its long-run relative frequency.
- If $\operatorname{Pr}(E)=.5$, i.e., probability of event E is .5 then event E will occur approximately half of the time when the experiment is repeated infinitely.
- If the experiment is repeated many (finite) times, then the approximation as relative frequency (proportion) is expected to improve as the number of repetitions increases.
- Imagine we toss a coin two times (our experiment), resulting in heads or tails as outcomes and the following sample space: $\Omega=\{H H, H T, T H, T T\}$
- An event E could be: "Tails in second flip".

Sets and Events

- Events can be combined to form more complicated events via a number of logical operations.

Operation	Set	Definition	Event interpretation
Union	$A \cup B$	elements either in A or B	either A or B or both
or in both	occur		
Intersection	$A \cap B$	elements both in A and B	both A and B occur
Complement	\bar{A}	elements not in A	A does not occur

- If B contains A, we write $A \subseteq B$ and interpret it as: "when A occurs, so does B (but not necessarily vice versa)".

The Concept of Probability

- Intuitively, think of probability as assigning real numbers to every element of the sample space in a way that the sum of all such numbers is 1 .
- Example: 4 people vote for candidate ' A ', and 6 people vote for candidate ' B '.
- Therefore, $\operatorname{Pr}(A)=0.4$ and $\operatorname{Pr}(B)=0.6$ i.e., probabilities express the proportion of votes cast relative to the total number of votes.
- Probabilities are real numbers $\operatorname{Pr}(A)$ assigned to every event A of sample space Ω such that:
(a) $\operatorname{Pr}(A) \geq 0$: Probabilities are nonnegative.
(b) $\operatorname{Pr}(\Omega)=1$: The total probability is 1 .
(c) If A_{1}, \ldots, A_{k} are mutually exclusive events, then

$$
\operatorname{Pr}\left(A_{1} \cup \cdots \cup A_{k}\right)=\operatorname{Pr}\left(A_{1}\right)+\cdots+\operatorname{Pr}\left(A_{k}\right)
$$

Random variables

Random Variable

- A random variable is a function that assigns a number to each outcome of the sample space of an experiment.
- Imagine we toss a coin two times; this results in the following sample space: $\Omega=\{H H, H T, T H, T T\}$.
- A random variable X that counts the number of heads looks as follows:

Outcome	value x of X
HH	2
HT	1
TH	1
TT	0

- The above table shows a frequency distribution of X.

Probability Distributions

- Distributions of random variables are probability distributions if for all possible outcomes, it tells us the probabilities for these outcomes to occur.
- Probability distributions are analogous to frequency distributions, except that they are based on probability theory rather than observations in sample data.
- Two kinds of distributions exist:
- Discrete Distributions: e.g., Bernoulli, Binomial, Poisson. (Examples?)
- Continuous Distributions: e.g., Uniform, Normal, Logistic, t-distribution.

Distributions of Random Variables

- The probabilities $p(x)$ or $P(X=x)$ for all values of a random variable X form the probability density function (PDF). For example, the probability distribution for the number of heads in two coin flips is:

x	$p(x)$
0	.25
1	.50
2	.25
Total	1.00

- The probability of observing a value less or equal than $x, P(x)=P(X \leq x)$ yields the cumulative distribution function (CDF):

x	$P(x)$
0	.25
1	.75
2	1

Difference between PDF and CDF

- Probability density function (PDF): What is the probability that we get
- exactly x_{i} (for discrete distributions)?
- $a \leq x_{i} \leq b$ (for continuous distributions)?
- cumulative distribution function (CDF): What is the probability that we get some value equal to or smaller than x_{i} ?
- The main point to understand is that areas under the density curve $p(x)$ are interpreted as probabilities, and that the height of the CDF gives the probability of observing values of X less than or equal to the value x.

Expected Value and Variance

- Expected Value: Specifies the center of the probability distribution:
- X discrete:

$$
E(X)=\sum_{\text {all } x} x p(x)
$$

- X continuous:

$$
E(X)=\int_{-\infty}^{+\infty} x p(x) d x
$$

- Variance: Specifies the spread of the probability distribution
- X discrete:

$$
\operatorname{Var}(X)=\sum_{\text {all } x}(x-E(X))^{2} p(x)
$$

- X continuous:

$$
\operatorname{Var}(X)=\int_{-\infty}^{+\infty}(x-E(X))^{2} p(x) d x
$$

Probability distributions

Binomial Distribution

- A binomial random variable K that represents the number of 'successes' in n outcomes of a binomial process.
- A binomial process is given by:
- n independent trials.
- Only two possible outcomes, which are arbitrarily called 'success' and 'failure'.
- Failure and success probabilities that remain constant over trials.
- Let n be the number of trials, p the probability of success
- It has mean (expected value)

$$
E(K)=n p
$$

and variance

$$
\operatorname{Var}(K)=n p(1-p)
$$

- The expected value is interpretable as the mean score of a random variable that would be observed if we were to perform the experiment an infinite number of times.

Binomial Probability Mass Function

- The binomial probability mass function is:

$$
f(k ; n, p)=P(K=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial cumulative distribution function

- The binomial cumulative distribution function is:

$$
F(k ; n, p)=P(K \leq k)=\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

Normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$

- Continuous distribution that describes data clustered around the mean.
- Uniquely determined by its mean/median/mode μ and variance σ^{2}.
- Importance of the normal distribution because of the Central Limit Theorem.

- Continuous distribution that describes data clustered around the mean.
- Uniquely determined by its mean/median/mode μ and variance σ^{2}.
- Importance of the normal distribution because of the Central Limit Theorem.

Normal Distribution: Probability Density Function

- Probability density function:

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

- $\sigma>0$ is the standard deviation, μ is the expected value.
- Note the difference in notation: $\mu=$ population mean, $\bar{X}=$ sample mean.

Normal Distribution: Cumulative distribution function

- Cumulative distribution function:

$$
F\left(x ; \mu, \sigma^{2}\right)=\int_{-\infty}^{x} f\left(t ; \mu, \sigma^{2}\right) d t=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

- The CDF allows us to determine the total area under the curve for any given distance from the mean μ.

Standardizing Variables

- To compare variables from different distributions, we can standardize them by building so called z-scores:

$$
z_{i}=\frac{x_{i}-\bar{x}}{\sigma}
$$

- Standardized variables in such a way will result in a new variable with zero mean and a standard deviation of one.
- For example, we want to compare grades from two students A and B who got grades (on a scale from 1 to 10) in different classes. Student A got 8 in her class, B got 7 in his. To determine who is 'better', we can standardize grades.
- We learn that A's class has a mean grade of 7 with a standard deviation of 2. B's class has mean 6 with standard deviation 1.5.
- So, $z_{A}=(8-7) / 2=0.5$ and $z_{B}=(7-6) / 1.5=0.67$

The Standard Normal Distribution $\mathcal{N}(0,1)$

$$
\bar{x}-2 \sigma \quad \bar{x}-1 \sigma
$$

$\bar{x}=0$
$\bar{x}+1 \sigma$
$\bar{x}+2 \sigma$

The Central Limit Theorem

Central Limit Theorem: An Informal Account

- We have a population distribution (not necessarily normal distributed) with mean μ and variance σ^{2} and we are interested in its mean.
- Repeatedly taking samples from that population and calculating the mean for each sample yields the sampling distribution of the mean.
- This sampling distribution approaches a normal distribution with mean μ and variance σ^{2} / n as n increases.
- This holds regardless of the shape of the original population distribution
- Basis for application of statistics to many 'natural' phenomena (which are the sum of many unobserved random events).
- How? Take a sample, calculate its mean. Do the same thing again and again. The distribution of sample means will be normal even if the population distribution was not.
- If you repeatedly draw random samples from the same population, calculate the means and plot them, you get a histogram that approaches a bell-shaped curve.

