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The Course

Roadmap
• Understand and model stochastic processes
• Understand statistical inference
• Implement it mathematically and learn how to estimate it

• OLS
• Maximum Likelihood

• Implement it using software
• R
• Basic programming skills
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Overview: Week 4

The Linear Regression Model

Estimation

The OLS Approach

Deriving the OLS Estimator

OLS Regression in Practice

Regression Diagnostics

Transformation and Nonlinearity

Statistical Inference for Linear Models

Assumptions

Standard Errors and Confidence Intervals
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The Linear Regression Model



Regression Analysis

• Regression analysis examines the relationship between a dependent variable, Y, and
one or more independent variables, X1, ..., Xk.

• The dependent variable is the quantity we want to explain.
• Examples: vote choice, level of corruption, income, democratization.

• The independent variable is the quantity that we use to explain variation in the
dependent variable.

• Examples: Economic, political, institutional, or demographic variables.
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The Linear Model

• Linear model: Y = a+ bX.
• a is the intercept: value of Y when X is zero.
• b is the slope: change in Y for a one-unit increase in X.

• This model implies a perfect linear relationship.
• In actual research, this is never the case, so we need to add an error term:

Y = β0 + β1X+ ϵ

• The error term (or disturbance), ϵ, represents unobserved factors other than X that
affect Y.
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Example

• Let’s re-examine the relationship between economic growth prior to an election and
the vote share received by the incumbent presidential party in the US.

• Let i = 1, ...,n denote observations with total sample size n.
• For each observation i, we can write:

VoteSharei = β0 + β1Growthi + ϵi
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What is the relationship between X and Y?

VoteSharei = β0 + β1Growthi + ϵi
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Residuals: How bad is our model prediction?

RESIDUAL = ACTUAL - PREDICTED
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Estimation



How to Pick the Best Line? The OLS Approach

• OLS is short for “Ordinary Least Squares”.
• The best line is the line that minimizes the sum of squared residuals (SSR).
• Residuals are vertical deviations from the line (the observed fitting errors):

ei = yi − (β̂0 + β̂1xi)
ei = yi − ŷi

• Conceptually, we minimize e2i =
n∑
i=1

(ACTUALi − PREDICTEDi)2 =
n∑
i=1

(RESIDUALi)2.

• Mathematically, we solve the following optimization problem (“Least Squares”):

min
β̂0,β̂1

n∑
i=1

e2i ⇔ min
β̂0,β̂1

n∑
i=1

(yi − β̂0 − β̂1xi)2
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How to Pick the Best Line? The OLS Approach

We minimize the sum of squared residuals: min
β̂0,β̂1

n∑
i=1

e2i .
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How to Pick the Best Line? The OLS Approach

We minimize the sum of squared residuals: min
β̂0,β̂1

n∑
i=1

e2i .
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How to Pick the Best Line? The OLS Approach

We minimize the sum of squared residuals: min
β̂0,β̂1

n∑
i=1

e2i .
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How to Pick the Best Line? The OLS Approach

We minimize the sum of squared residuals: min
β̂0,β̂1

n∑
i=1

e2i .
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How to Pick the Best Line? The OLS Approach

• How to pick the best line? Get the best slope and best intercept using differential
calculus.

• For Var(x) ̸= 0, the slope coefficient β̂1 is given by

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2 =
Cov(x, y)
Var(x) .

• The intercept coefficient β̂0 is given by
β̂0 = ȳ− β̂1x̄ where ȳ =

∑n
i=1

yi
n and x̄ =

∑n
i=1

xi
n .

• An estimator is unbiased if its expected value, E(θ̂), is identical to the population
value, θ.

• The estimator is best in the sense that it has the lowest variance across all unbiased
estimators.

• The OLS estimator is said to be the Best Linear Unbiased Estimator (BLUE).

QM 2021 | Linear Regression I 14



How to Pick the Best Line? The OLS Approach

• The residual variance (aka error variance) σ̂2 can be calculated as:

σ̂2 =

∑
e2i

n− 2
• Thus, the residual standard error is given as:

σ̂ =

√∑
e2i

n−2

• To get an unbiased estimate of the residual variance, we divide by n− 2 degrees of
freedom, rather than the sample size n.

• Degrees of freedom reduce by two because we have two optimization conditions.
This generalizes to n− k, where k is the number of parameters.

• In some literature you will find instead n− k− 1. Huh? What’s the difference? In this
case k denotes the number of independent variables (excluding the constant).
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Digression: Getting the Coefficients

• Let there be the following minimization problem:

min
β̂0,β̂1

n∑
i=1

(yi − β̂0 − β̂1xi)2

• Then, we have the following two partial derivatives:

∂
∑
e2i

∂β̂0
= 2

n∑
i=1

(yi − β̂0 − β̂1xi)(−1)

∂
∑
e2i

∂β̂1
= 2

n∑
i=1

(yi − β̂0 − β̂1xi)(−xi)
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Digression: Getting the Coefficients (β̂0)

• With the above partial derivative, the first-order condition for the first equation is
given as:

(−2)
n∑
i=1

(yi − β̂0 − β̂1xi) = 0

• This allows us to derive an expression for β̂0.

(−2)
n∑
i=1

(yi − β̂0 − β̂1xi) = 0

n∑
i=1

yi − nβ̂0 − β̂1

n∑
i=1

xi = 0

∑n
i=1 yi
n −

β̂1
∑n

i=1 xi
n = β̂0

ȳ− β̂1x̄ = β̂0
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Digression: Getting the Coefficients (β̂1)

• With the above partial derivative, the first-order condition for the second equation is
given as:

(−2)
( n∑

i=1

(yi − β̂0 − β̂1xi)(xi)
)

= 0

• This allows us to derive an expression for β̂1.

(−2)
n∑
i=1

(yi−β̂0 − β̂1xi)(xi) = 0

n∑
i=1

(yi−ȳ+ β̂1x̄− β̂1xi)(xi) = 0

n∑
i=1

(yi − ȳ− β̂1(xi − x̄))(xi) = 0

n∑
i=1

(xi)(yi − ȳ) = β̂1

n∑
i=1

(xi)(xi − x̄)
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Digression: Getting the Coefficients (β̂1)

• Almost there:
n∑
i=1

(xi)(yi − ȳ) = β̂1

n∑
i=1

(xi)(xi − x̄)

n∑
i=1

(xi − x̄)(yi − ȳ) = β̂1

n∑
i=1

(xi − x̄)(xi − x̄)

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)(xi − x̄)

β̂1 =
Cov(x, y)
Var(x)

• This is exactly what we wanted to show.
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OLS Regression in Practice



Least Squares Regression: Interpretation

• The regression line is: Ŷ = β̂0 + β̂1X.
• Interpreting the slope coefficient β̂1: On average, a one-unit increase in X produces a
β̂1 unit increase in Y.

• More generally, the so-called marginal effect of an infinitesimal change in X on Y, i.e.,
∂Ŷ
∂X = β̂1, is constant (independent of X) in case of OLS.

• The predicted value for X is Ŷ.
• Interpreting the intercept coefficient: When X is zero, the predicted value for Ŷ is β̂0.
Note that this may not be a meaningful quantity.

• We will see next week that this is particularly important for interaction effects.
• The regression line always passes through two points:

• Point 1: (xi = 0, yi = β̂0). Why?
• Point 2: (xi = x̄, yi = ȳ). Why?
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Least Squares Regression: Example
Year VoteShare Growth
1948 52.37 3.579
1952 44.595 .691
1956 57.764 -1.451
1960 49.913 .377
1964 61.344 5.109
1968 49.596 5.043
1972 61.789 5.914
1976 48.948 3.751
1980 44.697 -3.597
1984 59.17 5.440
1988 53.902 2.178
1992 46.545 2.662
1996 54.736 3.121
2000 50.265 1.219
2004 51.233 2.690

ȳ = 52.4578 x̄ = 2.4484

(yi − ȳ) (xi − x̄)
-0.088 1.131
-7.863 -1.757
5.306 -3.899
-2.545 -2.071
8.886 2.661
-2.862 2.595
9.331 3.466
-3.510 1.303
-7.761 -6.045
6.712 2.992
1.444 -0.270
-5.913 0.214
2.278 0.673
-2.193 -1.229
-1.225 0.242

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=
111.559
99.0181 = 1.127

β̂0 = ȳ− β̂1x̄ = 52.4578− 1.127 · 2.4484 = 49.699
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Least Squares Regression: Example

• OLS model estimation: ̂VoteSharei = 49.699+ 1.127 · Growthi

• The sum of squared residuals is minimized at
n∑
i=1

e2i = 311.1486
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Least Squares Regression: Example

• OLS model estimation: ̂VoteSharei = 49.699+ 1.127 · Growthi

• The sum of squared residuals is minimized at
n∑
i=1

e2i = 311.1486
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Least Squares Regression: Example

• OLS model estimation: ̂VoteSharei = 49.699+ 1.127 · Growthi

• The sum of squared residuals is minimized at
n∑
i=1

e2i = 311.1486
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Regression Diagnostics



Regression Diagnostics: Residual Analysis

• A residual plot is a scatterplot of the regression residuals against the explanatory
variable X or the predicted values Ŷ.

• The residual plot is a diagnostic plot as it helps us to detect patterns in the residuals.
• Patterns in residuals signal that systematic influences on Y still have not been
captured by our model, or that our model misrepresents the data, or that errors do
not have a constant variance.

• Punchline: Residual patterns diagnose model shortcomings.
• Ideally, residuals plots should look as if the pattern was generated by pure chance.
• By construction (first-order condition of β̂0), OLS residuals sum to zero:

n∑
i=1

(yi − β̂0 − β̂xi) =
n∑
i=1

(yi − ŷi) =
n∑
i=1

ei = 0.
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Regression Diagnostics: Residual Analysis
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Regression Diagnostics: Residual Analysis
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Regression Diagnostics: Goodness-of-Fit

• How well does our model explain the variation in the dependent variable?
• Disaggregate the variance of Y into that part that we have explained by X and that
part that we have not explained.

• Explained sum of squares (ESS) =
∑n

i=1(ŷi − ȳ)2

• Residual sum of squares (RSS) =
∑n

i=1(yi − ŷi)2 =
∑n

i=1 e
2
i

• Total sum of squares (TSS) =
∑n

i=1(yi − ȳ)2

• Remember: TSS=ESS+RSS
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Regression Diagnostics: Goodness-of-Fit

Explained Variance
Total Variance = 1− Unexplained Variance

Total Variance = Goodness-of-fit

ESS
TSS =

TSS− RSS
TSS = 1− RSS

TSS = R2

• Interpretation: Proportion of the total variance explained by the fitted model.
• The goodness-of-fit measure is bounded: 0 ≤ R2 ≤ 1
• For a bivariate linear regression model, R2 is identical to the squared Pearson’s r
correlation coefficient of x and y.

• Note the following two caveats:
• R2 is not resistant to outliers. One outlier can distort the value.
• R2 increases with the addition of more explanatory variables.
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Regression Diagnostics: Goodness-of-Fit

R2 = 0.288
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Regression Diagnostics: Goodness-of-Fit

• R2 increases the more explanatory variables we add.
• This is due to the fact that the sum of squared residuals never goes up as more
variables are added.

• The adjusted R2, therefore, imposes a penalty for adding independent variables.
• If an independent variable is added to a regression, the RSS falls, but so do the
degrees of freedom in the regression model.

• While the regular R2 is bounded in [0, 1], the adjusted R2 even can become negative.
This indicates a bad model fit.

• The adjusted R2 for sample size, n, and k independent variables is defined as
Adj. R2 = 1− (1− R2)

(
n−1

n−k−1

)
.

• Example: US Presidential Election Data.
R2 = 0.808 and Adj. R2 = 1− (1− 0.808)

(
15−1
15−1−1

)
= 0.793
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Transformation and Nonlinearity



What does linear in Linear Regression actually mean?

• The linearity assumption refers to linearity in parameters only.
• This allows for nonlinearities in variables.
• Suppose you want to model the following:

Y = β0Xβ1 · ϵ

Then, log(Y) = log(β0) + β1log(X) + log(ϵ)
Which is Ỹ = β̃0 + β̃1X̃+ ϵ̃

and can be estimated via OLS.

• Interpretation of the estimates ˆ̃β1 (and ˆ̃β0 respectively)?
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Logarithmic Transformation of Variables

• In applied work, you will sometimes encounter a dependent variable or a covariate
in logarithmically transformed:

• Log-transformed covariates makes sense, if we theoretically expect an nonlinear
decreasing impact of X on Y, e.g., the effect diminishes if X increases (e.g., GDP, district
magnitude, pop. density).

• Log-transformed dependent variable makes sense, if the residuals are not nearly
normally distributed (e.g., rightly skewed) and inclusion of further variables did not help
(to fix it afterwards).

• Our goal to make the relationship between two variables more linear through
transforming (one or both of) them.

• Interpretation of coefficient changes with respect to untransformed variables.
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Statistical Inference for Linear
Models



Classical OLS Assumptions

Suppose we have the following bivariate linear model:

Y = β0 + β1X+ ϵ

We need two assumptions to derive unbiased regression coefficients, β̂0 and β̂1.
• A1: An almost trivial assumption is that coefficients (i.e., parameters) are linear.
• A2: We make a zero conditional mean assumption:

E(ϵi | X) = 0

• For the multiple regression model, we also need to assume that there is no perfect
collinearity of independent variables, i.e., that X is not a function of other
independent variables in the model.

• This is why with k categories we only included k− 1 dummy variables.
• These assumptions are sufficient to estimate unbiased coefficients, β̂0 and β̂1, with
OLS.
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Classical OLS Assumptions

To also estimate the variance of the coefficients, we need to make additional
assumptions.
• A3: We assume constant variance, which is known as homoskedasticity, regardless of
the values of X:

Var(ϵi | X) = σ2

• A4: We assume no correlation among any pair of error terms:

Cov(ϵi, ϵj | Xi, Xj) = 0 ∀ i ̸= j

• A5: We assume normality of the error term:

ϵi | X ∼ N (0, σ2)
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Classical OLS Assumptions
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Standard Errors for Regression Coefficients

• If the zero conditional mean assumption, E(ϵi | X), holds, we get

E(β̂0) = β0

E(β̂1) = β1.

• Assuming normally distributed errors, ϵ | X ∼ N (0, σ2), the OLS coefficients
themselves are normally distributed.

β̂0 ∼ N
(
β0, Var(β̂0)

)
β̂1 ∼ N

(
β1, Var(β̂1)

)
• This allows us to calculate standard errors based on normal approximation.
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Standard Errors for Regression Coefficients

• The standard error for our estimated slope coefficient, β̂1, is:

Var(β̂1) =
σ2∑n

i=1 (xi − x̄)2

SE(β̂1) =
√

σ2∑n
i=1(xi − x̄)2

• The standard error for our estimated intercept coefficient, β̂0, is:

Var(β̂0) =
σ2

∑n
i=1 x

2
i

n∑n
i=1(xi − x̄)2

SE(β̂0) =

√√√√ σ2
∑n

i=1 x2i
n∑n

i=1(xi − x̄)2

• Before we can estimate standard errors, we need to estimate σ̂2 because we do not
observe σ2.
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Standard Errors for Regression Coefficients

• However, the regression error, σ2, is inherently unobservable, but can be estimated
from the model residuals ei.

• In the bivariate model an unbiased estimator for the error variance (aka residual
variance) is given as

σ̂2 =

∑n
i=1 e2i
n− 2 .

• This can be generalized to get an unbiased estimator in a multiple regression model
with k independent variables and one intercept (i.e., k+ 1 parameters):

σ̂2 =

∑n
i=1 e2i

n− (k+ 1) =

∑n
i=1 e2i

n− k− 1 .

• Thus, we get the root mean squared error (RMSE) aka standard error of the estimate
(How far is the model off on average?) of Y as:

σ̂ =

√ ∑n
i=1 e2i

n− k− 1 .
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