

Quantitative Methods in Political Science: Linear Regression I

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova | David M. Grundmanns Week 4 - 29 September 2021

Roadmap

- Understand and model stochastic processes
- Understand statistical inference
- Implement it mathematically and learn how to estimate it
 - OLS
 - Maximum Likelihood
- Implement it using software
 - ۰R
 - Basic programming skills

The Linear Regression Model

Estimation

The OLS Approach

Deriving the OLS Estimator

OLS Regression in Practice

Regression Diagnostics

Transformation and Nonlinearity

Statistical Inference for Linear Models

Assumptions

Standard Errors and Confidence Intervals

The Linear Regression Model

- Regression analysis examines the relationship between a dependent variable, *Y*, and one or more independent variables, *X*₁, ..., *X*_k.
- The dependent variable is the quantity we want to explain.
 - Examples: vote choice, level of corruption, income, democratization.
- The independent variable is the quantity that we use to explain variation in the dependent variable.
 - Examples: Economic, political, institutional, or demographic variables.

- Linear model: Y = a + bX.
 - a is the intercept: value of Y when X is zero.
 - b is the slope: change in Y for a one-unit increase in X.
- This model implies a perfect linear relationship.
- In actual research, this is never the case, so we need to add an error term:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

• The error term (or disturbance), ϵ , represents unobserved factors other than X that affect Y.

- Let's re-examine the relationship between economic growth *prior* to an election and the vote share received by the incumbent presidential party in the US.
- Let i = 1, ..., n denote observations with total sample size n.
- For each observation *i*, we can write:

 $VoteShare_i = \beta_0 + \beta_1 Growth_i + \epsilon_i$

What is the relationship between X and Y?

 $VoteShare_i = \beta_0 + \beta_1 Growth_i + \epsilon_i$

Residuals: How bad is our model prediction?

RESIDUAL = ACTUAL - PREDICTED

US Presidential Elections (1948-2004)

Estimation

How to Pick the Best Line? The OLS Approach

- OLS is short for "<u>O</u>rdinary <u>L</u>east <u>S</u>quares".
- The best line is the line that minimizes the sum of squared residuals (SSR).
- Residuals are vertical deviations from the line (the observed fitting errors):

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$
$$e_i = y_i - \hat{y}_i$$

- Conceptually, we minimize $e_i^2 = \sum_{i=1}^n (ACTUAL_i PREDICTED_i)^2 = \sum_{i=1}^n (RESIDUAL_i)^2$.
- Mathematically, we solve the following optimization problem ("Least Squares"):

$$\min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^n e_i^2 \quad \Leftrightarrow \quad \min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

How to Pick the Best Line? The OLS Approach

- How to pick the best line? Get the best slope and best intercept using differential calculus.
- For $Var(x) \neq 0$, the slope coefficient $\hat{\beta}_1$ is given by

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{Cov(x, y)}{Var(x)}.$$

- The intercept coefficient \hat{eta}_0 is given by

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$
 where $\bar{y} = \sum_{i=1}^n \frac{y_i}{n}$ and $\bar{x} = \sum_{i=1}^n \frac{x_i}{n}$.

- An estimator is unbiased if its expected value, $E(\hat{\theta})$, is identical to the population value, θ .
- The estimator is **best** in the sense that it has the **lowest variance** across all unbiased estimators.
- The OLS estimator is said to be the Best Linear Unbiased Estimator (BLUE).

How to Pick the Best Line? The OLS Approach

• The residual variance (aka error variance) $\hat{\sigma}^2$ can be calculated as:

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n-2}$$

• Thus, the residual standard error is given as:

$$\hat{\sigma} = \sqrt{\frac{\sum e_i^2}{n-2}}$$

- To get an unbiased estimate of the residual variance, we divide by n 2 degrees of freedom, rather than the sample size n.
- Degrees of freedom reduce by two because we have two optimization conditions. This generalizes to n - k, where k is the number of *parameters*.
- In some literature you will find instead n k 1. Huh? What's the difference? In this case k denotes the number of *independent variables* (*excluding* the constant).

Digression: Getting the Coefficients

• Let there be the following minimization problem:

$$\min_{\hat{\beta}_{0},\hat{\beta}_{1}}\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})^{2}$$

• Then, we have the following two partial derivatives:

$$\frac{\partial \sum e_i^2}{\partial \hat{\beta}_0} = 2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-1)$$
$$\frac{\partial \sum e_i^2}{\partial \hat{\beta}_1} = 2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-x_i)$$

Digression: Getting the Coefficients $(\hat{\beta}_0)$

• With the above partial derivative, the first-order condition for the first equation is given as:

.....

$$(-2)\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})=0$$

• This allows us to derive an expression for $\hat{\beta}_0$.

$$(-2)\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i}) = 0$$
$$\sum_{i=1}^{n} y_{i} - n\hat{\beta}_{0} - \hat{\beta}_{1}\sum_{i=1}^{n} x_{i} = 0$$
$$\frac{\sum_{i=1}^{n} y_{i}}{n} - \frac{\hat{\beta}_{1}\sum_{i=1}^{n} x_{i}}{n} = \hat{\beta}_{0}$$
$$\bar{y} - \hat{\beta}_{1}\bar{x} = \hat{\beta}_{0}$$

Digression: Getting the Coefficients $(\hat{\beta}_1)$

• With the above partial derivative, the first-order condition for the second equation is given as:

$$(-2)\left(\sum_{i=1}^n(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)(x_i)\right)=0$$

• This allows us to derive an expression for $\hat{\beta}_1$.

$$(-2)\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(x_i) = 0$$
$$\sum_{i=1}^{n} (y_i - \bar{y} + \hat{\beta}_1 \bar{x} - \hat{\beta}_1 x_i)(x_i) = 0$$
$$\sum_{i=1}^{n} (y_i - \bar{y} - \hat{\beta}_1 (x_i - \bar{x}))(x_i) = 0$$
$$\sum_{i=1}^{n} (x_i)(y_i - \bar{y}) = \hat{\beta}_1 \sum_{i=1}^{n} (x_i)(x_i - \bar{x})$$

QM 2021 | Linear Regression I

Digression: Getting the Coefficients $(\hat{\beta}_1)$

• Almost there:

$$\sum_{i=1}^{n} (x_i)(y_i - \bar{y}) = \hat{\beta}_1 \sum_{i=1}^{n} (x_i)(x_i - \bar{x})$$
$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \hat{\beta}_1 \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})$$
$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})}$$
$$\hat{\beta}_1 = \frac{Cov(x, y)}{Var(x)}$$

• This is exactly what we wanted to show.

OLS Regression in Practice

Least Squares Regression: Interpretation

- The regression line is: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$.
- Interpreting the slope coefficient $\hat{\beta}_1$: On average, a one-unit increase in X produces a $\hat{\beta}_1$ unit increase in Y.
- More generally, the so-called marginal effect of an infinitesimal change in X on Y, i.e., $\frac{\partial \hat{Y}}{\partial X} = \hat{\beta}_1$, is constant (independent of X) in case of OLS.
- The predicted value for X is \hat{Y} .
- Interpreting the intercept coefficient: When X is zero, the predicted value for \hat{Y} is $\hat{\beta}_0$. Note that this may not be a meaningful quantity.
 - We will see next week that this is particularly important for interaction effects.
- The regression line always passes through two points:
 - Point 1: $(x_i = 0, y_i = \hat{\beta}_0)$. Why?
 - Point 2: $(x_i = \overline{x}, y_i = \overline{y})$. Why?

Year	VoteShare	Growth		$(y_i - \overline{y})$	$(X_i - \overline{X})$
1948	52.37	3.579	-	-0.088	1.131
1952	44.595	.691		-7.863	-1.757
1956	57.764	-1.451		5.306	-3.899
1960	49.913	.377		-2.545	-2.071
1964	61.344	5.109		8.886	2.661
1968	49.596	5.043		-2.862	2.595
1972	61.789	5.914		9.331	3.466
1976	48.948	3.751		-3.510	1.303
1980	44.697	-3.597		-7.761	-6.045
1984	59.17	5.440		6.712	2.992
1988	53.902	2.178		1.444	-0.270
1992	46.545	2.662		-5.913	0.214
1996	54.736	3.121		2.278	0.673
2000	50.265	1.219		-2.193	-1.229
2004	51.233	2.690		-1.225	0.242
	$\bar{y} = 52.4578$	$\bar{x} = 2.4484$	-		

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{111.559}{99.0181} = 1.127$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 52.4578 - 1.127 \cdot 2.4484 = 49.699$$

- OLS model estimation: $VoteShare_i = 49.699 + 1.127 \cdot Growth_i$
- \cdot The sum of squared residuals is minimized at $\sum e_i^2 =$ 311.1486

i - 1

- OLS model estimation: $VoteShare_i = 49.699 + 1.127 \cdot Growth_i$
- \cdot The sum of squared residuals is minimized at $\sum e_i^2 =$ 311.1486

i - 1

- OLS model estimation: $VoteShare_i = 49.699 + 1.127 \cdot Growth_i$
- \cdot The sum of squared residuals is minimized at $\sum e_i^2 =$ 311.1486

i - 1

Regression Diagnostics

Regression Diagnostics: Residual Analysis

- A residual plot is a scatterplot of the regression residuals against the explanatory variable X or the predicted values \hat{Y} .
- The residual plot is a diagnostic plot as it helps us to detect patterns in the residuals.
- Patterns in residuals signal that systematic influences on Y still have not been captured by our model, or that our model misrepresents the data, or that errors do not have a constant variance.
- Punchline: Residual patterns diagnose model shortcomings.
- Ideally, residuals plots should look as if the pattern was generated by pure chance.
- By construction (first-order condition of $\hat{\beta}_0$), OLS residuals sum to zero:

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta} x_i) = \sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} e_i = 0.$$

Regression Diagnostics: Residual Analysis

Regression Diagnostics: Residual Analysis

- How well does our model explain the variation in the dependent variable?
- Disaggregate the variance of Y into that part that we have explained by X and that part that we have not explained.
 - Explained sum of squares (ESS) = $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
 - Residual sum of squares (RSS) = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$
 - Total sum of squares (TSS) = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Remember: TSS=ESS+RSS

- Interpretation: Proportion of the total variance explained by the fitted model.
- The goodness-of-fit measure is bounded: 0 $\leq R^2 \leq 1$
- For a bivariate linear regression model, R^2 is identical to the squared Pearson's r correlation coefficient of x and y.
- Note the following two caveats:
 - R^2 is not resistant to outliers. One outlier can distort the value.
 - R^2 increases with the addition of more explanatory variables.

Regression Diagnostics: Goodness-of-Fit

- R^2 increases the more explanatory variables we add.
- This is due to the fact that the sum of squared residuals never goes up as more variables are added.
- The adjusted R^2 , therefore, imposes a penalty for adding independent variables.
- If an independent variable is added to a regression, the RSS falls, but so do the degrees of freedom in the regression model.
- While the regular *R*² is bounded in [0, 1], the adjusted *R*² even can become negative. This indicates a bad model fit.
- The adjusted R^2 for sample size, *n*, and *k* independent variables is defined as

Adj.
$$R^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-k-1} \right).$$

• Example: US Presidential Election Data.

$$R^2 = 0.808$$
 and Adj. $R^2 = 1 - (1 - 0.808) \left(\frac{15 - 1}{15 - 1 - 1}\right) = 0.793$

Transformation and Nonlinearity

What does linear in Linear Regression actually mean?

- The linearity assumption refers to linearity in parameters only.
- This allows for nonlinearities in variables.
- Suppose you want to model the following:

$$Y = \beta_0 X^{\beta_1} \cdot \epsilon$$

- Then, $log(Y) = log(\beta_0) + \beta_1 log(X) + log(\epsilon)$ Which is $\tilde{Y} = \tilde{\beta_0} + \tilde{\beta_1} \tilde{X} + \tilde{\epsilon}$ and can be estimated via QLS.
- Interpretation of the estimates $\hat{\vec{\beta}}_1$ (and $\hat{\vec{\beta}}_0$ respectively)?

Logarithmic Transformation of Variables

- In applied work, you will sometimes encounter a dependent variable or a covariate in logarithmically transformed:
 - Log-transformed covariates makes sense, if we theoretically expect an nonlinear decreasing impact of *X* on *Y*, e.g., the effect diminishes if *X* increases (e.g., GDP, district magnitude, pop. density).
 - Log-transformed dependent variable makes sense, if the residuals are not nearly normally distributed (e.g., rightly skewed) and inclusion of further variables did not help (to fix it afterwards).
- Our goal to make the relationship between two variables more linear through transforming (one or both of) them.
- Interpretation of coefficient changes with respect to untransformed variables.

Statistical Inference for Linear Models Suppose we have the following bivariate linear model:

 $Y = \beta_0 + \beta_1 X + \epsilon$

We need two assumptions to derive unbiased regression coefficients, $\hat{\beta}_0$ and $\hat{\beta}_1$.

- A1: An almost trivial assumption is that coefficients (i.e., parameters) are linear.
- A2: We make a zero conditional mean assumption:

 $E(\epsilon_i \mid X) = 0$

- For the multiple regression model, we also need to assume that there is no perfect collinearity of independent variables, i.e., that *X* is not a function of other independent variables in the model.
 - This is why with k categories we only included k 1 dummy variables.
- These assumptions are sufficient to estimate unbiased coefficients, $\hat{\beta}_0$ and $\hat{\beta}_1$, with OLS.

Classical OLS Assumptions

To also estimate the variance of the coefficients, we need to make additional assumptions.

• A3: We assume constant variance, which is known as homoskedasticity, regardless of the values of *X*:

$$Var(\epsilon_i \mid X) = \sigma^2$$

• A4: We assume no correlation among any pair of error terms:

$$Cov(\epsilon_i, \epsilon_j \mid X_i, X_j) = 0 \quad \forall \ i \neq j$$

• A5: We assume normality of the error term:

$$\epsilon_i \mid X \sim \mathcal{N}(0, \sigma^2)$$

Classical OLS Assumptions

• If the zero conditional mean assumption, $E(\epsilon_i \mid X)$, holds, we get

$$E(\hat{\beta}_0) = \beta_0$$
$$E(\hat{\beta}_1) = \beta_1.$$

• Assuming normally distributed errors, $\epsilon \mid X \sim \mathcal{N}(0, \sigma^2)$, the OLS coefficients themselves are normally distributed.

$$\hat{\beta}_0 \sim \mathcal{N}\left(\beta_0, \operatorname{Var}(\hat{\beta}_0)\right)$$
$$\hat{\beta}_1 \sim \mathcal{N}\left(\beta_1, \operatorname{Var}(\hat{\beta}_1)\right)$$

• This allows us to calculate standard errors based on normal approximation.

Standard Errors for Regression Coefficients

• The standard error for our estimated slope coefficient, $\hat{\beta}_1$, is:

$$Var(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$SE(\hat{\beta}_{1}) = \sqrt{\frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}$$

• The standard error for our estimated intercept coefficient, $\hat{\beta}_0$, is:

$$Var(\hat{\beta}_{0}) = \frac{\sigma^{2} \frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$SE(\hat{\beta}_{0}) = \sqrt{\frac{\sigma^{2} \frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}$$

- Before we can estimate standard errors, we need to estimate $\hat{\sigma}^2$ because we do not observe σ^2 .

QM 2021 | Linear Regression I

Standard Errors for Regression Coefficients

- However, the regression error, σ^2 , is inherently unobservable, but can be estimated from the model residuals e_i .
- In the bivariate model an unbiased estimator for the error variance (aka *residual variance*) is given as

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n-2}.$$

• This can be generalized to get an unbiased estimator in a multiple regression model with k independent variables and one intercept (i.e., k + 1 parameters):

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n - (k+1)} = \frac{\sum_{i=1}^n e_i^2}{n - k - 1}.$$

• Thus, we get the root mean squared error (RMSE) aka standard error of the estimate (*How far is the model off on average?*) of Y as:

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n-k-1}}.$$