Quantitative Methods in Political Science:
 Linear Regression: Statistical Inference, Dummies and Interactions

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova | David M. Grundmanns
Week 6-13 October 2021

Quiz

Consider a linear model: $Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\epsilon$. The figure represents the total variation of Y, X and Z each with a circle. Which of the following statements are true?

1. X and Z are correlated. Their covariation is represented by $d+e$.
2. The graph makes transparent that Z is related to both, Y and X.
3. The relationship between Y and X statistically controlling for Z is accounted for by the area of b.
4. Not controlling for Z in the model would attribute $b+d$ to the variation of X that is shared with Y.
5. If we fail to control for Z we will end up with a biased estimate of X 's effect on Y.

The Course

Roadmap

- Understand and model stochastic processes
- Understand statistical inference
- Implement it mathematically and learn how to estimate it
- OLS
- Maximum Likelihood
- Implement it using software
- R
- Basic programming skills

Overview: Week 6

Significance Testing
Significance Test for One Coefficient: Cl, t-Test and p-value

Categorical Variables in Regression

Interactions

Significance Testing

Statistical Inference for Linear Models

- This lecture: Classical statistical regression inference including
- confidence intervals for estimated coefficients,
- significance tests for estimated coefficients using confidence intervals, t-test, p-values
- Next lecture: Interpretation of regression inference including
- how to make results accessible to non-technical readers,
- how to learn about quantities of interest,
- how to display uncertainty of own results, and
- which tools to use (predicted probabilities, expected values, and first differences).

Confidence Intervals for Regression Coefficients

- To assess the uncertainty around our estimates, we construct confidence intervals, such that this interval contains the true population parameter in, e.g., 95% of the hypothetically repeated samples.
- More formally, let $\alpha(0<\alpha<1)$ be the level of significance and δ be a positive number. Then, the confidence interval around β_{j} is defined as

$$
\operatorname{Pr}\left(\hat{\beta}_{j}-\delta \leq \beta_{j} \leq \hat{\beta}_{j}+\delta\right)=1-\alpha
$$

- One strategy: Assume normal sampling distribution (i.e., normal approximation) and given that we know the standard errors of the coefficients we can construct confidence intervals (i.e., $\delta \approx 1.96 \cdot \operatorname{SE}\left(\widehat{\beta}_{j}\right)$)

Confidence Intervals for Regression Coefficients

- Other strategy: We analytically construct a confidence interval using a normalized test statistic. The test statistic t^{*} for our hypothesized value of β_{j} can be calculated as

$$
t^{*}=\frac{\hat{\beta}_{j}-\beta_{j}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}\left(x_{j}-\bar{x}_{j}\right)^{2}}}} \sim t_{(n-k-1)} .
$$

- Since we use $\hat{\sigma}^{2}$ instead of the true population variance, σ^{2}, the test statistic is no longer normally distributed, but t-distributed with $n-k-1$ degrees of freedom, where k is the number of independent variables.

Confidence Intervals for Regression Coefficients

- With such a normalized test statistic, t^{*}, and equal probability density at the lower and upper tails, a confidence interval for the true value β_{j} is given as

$$
\operatorname{Pr}\left(t_{\left(\frac{\alpha}{2}\right)} \leq t^{*} \leq t_{\left(1-\frac{\alpha}{2}\right)}\right)=1-\alpha .
$$

- Substituting in our explicit expression for t^{*} and relying on the symmetry of the t-distribution, yields

$$
\operatorname{Pr}\left(\hat{\beta}_{j}-t_{\left(1-\frac{\alpha}{2}\right)} \cdot \operatorname{SE}\left(\hat{\beta}_{j}\right) \leq \beta_{j} \leq \hat{\beta}_{j}+t_{\left(1-\frac{\alpha}{2}\right)} \cdot \operatorname{SE}\left(\hat{\beta}_{j}\right)\right)=1-\alpha .
$$

- Or more simply, we have the known expression:

$$
\hat{\beta}_{j} \pm t_{\left(1-\frac{\alpha}{2}\right)} \cdot \operatorname{SE}\left(\hat{\beta}_{j}\right)
$$

- When $n-k-1>120$, then one can use the 97.5 percentile of the standard normal (i.e., 1.96) rather than the t-distribution (in fact, use 2 as a rule-of-thumb (!), i.e. $\delta \approx 2 \cdot \operatorname{SE}\left(\hat{\beta}_{j}\right)$) to construct a 95% confidence interval around the true value β_{j}.

In general, though, tests are flawed. Tests detect things that don't exist (false positive), and miss things that do exist (false negative).

- Statistical inference is basically a decision problem between two alternatives:
- H_{0} : Null hypothesis.
- H_{A} : Alternative hypothesis.
- A 95\% confidence interval means that under repeated experiments the given interval includes the true parameter, β, 95 out of 100 times. Hence, with H_{0} being true, we falsely reject $H_{0} 5$ times out of 100 even though we should not have done so (type I error).

Is 95\% Good Enough? Type I and Type II Errors

	H_{0} is true	H_{0} is false
Not reject H_{0}	correct	Type II error
decision	(false negative)	
Reject H_{0}	Type I error	correct
	(false positive)	decision

- Consider the errors for a case in which the hypotheses are " H_{0} : No disease" and " H_{A} : Disease". Which error would you "prefer"?

Type I and Type II Errors

- Assume that H_{0} is that a patient has no disease.

	H_{0} : No disease	H_{A} : Disease		
Not reject H_{0}	correct	Type II error (false negative) Reject H_{0}		
decision				
Type I error				
(false positive)				correct
:---:				
decision				

- Then, for a type I error, the patient is told that s/he has the disease even though s/he does not. The test to diagnose the patient is positive ("Yes, you have the disease"), but falsely so.
- For a type II error, however, the patient is not diagnosed of having a disease even though s/he does have it. The test is negative ("No worries, you do not have the disease"), but falsely so.

Hypothesis Test for Coefficient Using t-Test

- In testing statistical significance of a regression coefficient, we usually want to know if our estimated coefficient $\hat{\beta}_{j}$ is different from zero, i.e.: $\beta_{j}^{*} \neq 0$.
- We test the null hypothesis about the true population parameter, β_{j}, against the (two-sided) alternative hypothesis:
- $H_{0}: \beta_{j}^{*}=0$
- $H_{A}: \beta_{j}^{*} \neq 0$
- Thus, we construct a test statistic, t^{*}, given our hypotheses about β_{j}^{*}

$$
t^{*}=\frac{\hat{\beta}_{j}-\beta_{j}^{*}}{S E\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{S E\left(\hat{\beta}_{j}\right)} \sim t_{(n-k-1)} .
$$

- We reject the null hypothesis, H_{0}, at the $\alpha-\%$ significance level if

$$
\left|t^{*}\right|>t_{\left(1-\frac{\alpha}{2}, n-k-1\right)} \text { ("critical value"), }
$$

where $n-k-1$ are the degrees of freedom with k independent variables.

Another way to say the same thing: Computing p-Values

- So far we used a classical approach to hypothesis testing:
- Specifying alternative (and null) hypothesis
- Choose significance level (α)
- Get the respective critical value $\left(t_{\left(1-\frac{\alpha}{2}, n-k-1\right)}\right)$ and compare it to test statistic $\left(t^{*}\right)$
- H_{0} is either rejected or not rejected at a chosen significance level
- Different scholars might prefer different significance levels (and the null might be not rejected at the 5% but at the 10% level. Which level is correct?)

Another way to say the same thing: Computing p-Values

- Alternative strategy: Given the observed t^{*}, what is the smallest significance level at which the null hypothesis would be rejected? This is called the p-value $(p \in(0,1))$.

$$
p=\operatorname{Pr}\left(\left|t_{(n-k-1)}\right|>\left|t^{*}\right|\right)=2 \operatorname{Pr}\left(t_{(n-k-1)}>\left|t^{*}\right|\right)
$$

where $\operatorname{Pr}\left(t>t^{*}\right)$ is the area to the right of t^{*} (given $\left.(n-k-1) d f\right)$

- Small p-values are evidence against the null, large p-values provide little evidence against the null.
- Say $p=.03$, then we would observe a value of the t statistic as extreme as we did in only 3% of all random samples if the H_{0} is true. Thus, this is pretty strong evidence against the null. Hence, H_{0} is not likely to be true.

Categorical Variables in Regression

Categorical Variables in Regression: Introduction

- In political science, variables are often qualitative or categorical.
- We can easily include qualitative information as independent variables in our regression model.
- Examples for qualitative data are:
- Vote choice (Did vote or did not vote).
- Gender (Is male or female).
- Regime type (Is a democracy or an autocracy).
- Membership status (Is a EU member state or not).

Dummy Variables

- Qualitative information often comes in the form of binary information. These zero-one variables are called dummies or dummy variables.
- These variables come with a trade-off:
- Downside: Loss in information.
- Upside: Dummy variables are easy to interpret.
- Good coding practice: Name your variable after the " 1 " category, e.g., it should be "female" and not "gender". This helps to avoid confusion!
- For further notes on "Coding style and Good Computing Practice", see Jonathan Nagler's website and, more recently a very interesting and helpful article by Nick Eubank (2016) in The Political Methodologist.

Example: Income and Education - A Gender Gap

- Suppose we want to examine the relationship between education and income among women and men.
- We collected the following fake data:

Example: Income and Education - A Gender Gap

- Suppose we want to examine the relationship between education and income among women and men.
- We collected the following fake data:

Example: Income and Education - A Gender Gap

- Our model: Income $=\beta_{0}+\beta_{1} *$ Education $+\beta_{2} *$ Female $+\epsilon$
- Suppose we find the following estimates:

$$
\widehat{\text { ncome }}=25934+894 \cdot \text { Education }-3876 \cdot \text { Female }
$$

- Using the Female-dummy, we get two regression lines. One for males and one for females:
- For females (if Female $=1$) we obtain:

$$
\widehat{\text { ncome }}=(25934-3876 \cdot 1)+894 \cdot \text { Education }=22058+894 \cdot \text { Education } .
$$

- For men (if Female $=0$) we obtain:

$$
\widehat{\text { Income }}=(25934-3876 \cdot 0)+894 \cdot \text { Education }=25934+894 \cdot \text { Education } .
$$

Example: Income and Education - A Gender Gap

- Solid line for males: $\widehat{\mid \text { ncome }}=25934+894 \cdot$ Education
- Dashed line for females: $\widehat{\text { ncome }}=22058+894$. Education
- This illustrates that dummy variables shift the intercept up or down.

Using Dummy Variables for Multiple Categories

- Dummy variable trap.
- Base group is represented by the intercept.
- If we were to add a dummy variable for each group, we would introduce perfect multi-collinearity.
- Statistical software usually warns you of this.
- Solution: Split a k-category variable into $k-1$ binary dummies.
- Interpretation is always relative to the baseline category.
- Suppose you analyze the effect of different social classes (lower, middle upper) on income $\left(\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} D_{1}+\hat{\beta}_{2} D_{2}\right)$:

	Dummy Variables		
Social Class	D_{1}	D_{2}	
lower	0	0	$\hat{Y}=\hat{\beta}_{0}$
middle	1	0	$\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1}$
upper	0	1	$\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{2}$

Cleverly using Dummy Variables for Multiple Categories

- What if we want to test the difference between middle and upper class?
- Cleverly construct dummy variables such that an estimated coefficient identifies this difference.

	Dummy Variables		
Social Class	\tilde{D}_{1}	\tilde{D}_{2}	
lower	0	0	$\hat{Y}=\hat{\beta}_{0}$
middle	1	0	$\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1}$
upper	1	1	$\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1}+\hat{\beta}_{2}$

- When estimating $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} \tilde{D}_{1}+\hat{\beta}_{2} \tilde{D}_{2}$ then the estimated coefficient of the second dummy, $\hat{\beta}_{2}$, represents (by design!) the difference between middle and upper class.

Interactions

Modeling Interactions

- So far, we have only been adding variables in an additive manner, e.g.

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\epsilon
$$

- Suppose, however, we want to test a hypothesis that the relation between an independent variable X_{i} and dependent variable Y depends on the value of another dummy variable D.
- Think of: Income $=\beta_{0}+\beta_{1}$ Education $+\beta_{2}$ Female $+\beta_{3}$ Education. Female $+\epsilon$
- The effect of X_{i} on Y is also called conditional because the hypothesized effect is conditional on D.
- In other words, if D is 1, the relation between X_{i} and Y is different than when D is zero.
- This is what we also call an interaction effect.
- Interaction model: $\boldsymbol{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D+\beta_{3} X_{1} \cdot \boldsymbol{D}+\ldots+\epsilon$

Modeling Interactions: Interpretation

- An interaction effect conditions the effect of an independent variable (e.g., Education) on the dependent variable.
- Interaction model if $D=0$ (condition is absent):

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} 0+\beta_{3} X_{1} 0+\epsilon=\beta_{0}+\beta_{1} X_{1}+\epsilon
$$

- Interaction model if $D=1$ (condition is present):

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} 1+\beta_{3} X_{1} 1+\epsilon=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{1}+\epsilon
$$

- In other words, we get an intercept shift and a change in slopes.
- Do not interpret constitutive terms (i.e, $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$) as if they are unconditional effects!

Modeling Interactions: Interpretation

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\beta_{3} X Z+\varepsilon
$$

Hypothesis H_{1} : An increase in X is associated with an increase in Y when condition Z is met, but not when condition Z is absent.

Modeling Interactions with Continuous Variables

- Interactions between dummy variables and continuous variables are the easiest to understand.
- But, we can interact continuous variables as well.
- Assume instead of a dummy D, X_{2} to be continuous.
- Example: Temporally-proximate presidential elections will reduce the effective number of electoral parties if and only if the number of presidential candidates is sufficiently low.
- Thus,

$$
\begin{aligned}
\text { ElectoralParties }= & \beta_{0}+\beta_{1} \text { Proximity }+\beta_{2} \text { PresidentialCandidates } \\
& +\beta_{3} \text { Proximity } \cdot \text { PresidentialCandidates }+\epsilon
\end{aligned}
$$

Modeling Interactions with Continuous Variables

- In this case, the effect of the independent variable on the dependent variable gradually changes as another variable changes.

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\ldots+\epsilon \\
& Y=\beta_{0}+\beta_{2} X_{2}+\left(\beta_{1}+\beta_{3} X_{2}\right) \cdot X_{1}+\ldots+\epsilon
\end{aligned}
$$

- Marginal effect of X_{1} on Y (i.e., $\frac{\delta Y}{\delta X_{1}}=\beta_{1}+\beta_{3} X_{2}$) represents the effect of change in X_{1} on the expected change in Y, especially when the change in the independent variable $\left(X_{1}\right)$ is infinitely small (marginal).
- The standard error of this marginal effect is (next week you will understand how to get variances and covariances):

$$
\hat{\sigma}_{\frac{\delta x}{\delta X_{1}}}=\sqrt{\operatorname{var}\left(\hat{\beta}_{1}\right)+X_{2}^{2} \operatorname{var}\left(\hat{\beta}_{3}\right)+2 X_{2} \operatorname{cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)}
$$

- Of course, you may also interpret the marginal effect of X_{2} on Y analogously.

Modeling Interactions with Continuous Variables

Table 1 The impact of presidential elections on the effective number of electoral parties. Dependent variable: Effective number of electoral parties

Regressor	Model
Proximity	$-3.44^{* *}(0.49)$
PresidentialCandidates	$0.29^{*}(0.07)$
Proximity*PresidentialCandidates	$0.82^{* *}(0.22)$
Controls	$-\overline{1^{* *}}(0.33)$
Constant	0.34
R^{2}	522
N	

${ }^{*} p<0.05 ; * * p<0.01$ (two-tailed). Control variables not shown here. Robust standard errors clustered by country in parentheses.

Fig. 3 The marginal effect of temporally proximate presidential elections on the effective number of electoral parties.

