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Quiz

Consider a linear model: Y = β0 + β1X+ β2Z+ ϵ. The figure represents the total variation
of Y, X and Z each with a circle. Which of the following statements are true?191 10.4 What Happens When We Fail to Control for Z? 

z 

g 

y the effects of that Z will somehow 
work their way into the parameter es-
rimates for the independent variable 
that we do estimate (X) and pollute 
our esrimate of the effect of Xon Y. 

The preceding equation also sug-
gests when the magnitude of the bias 
is likely . to be large and when it is 
likely to be small. If either or both of 
the the bias term [ß2 
and Ei=;(Xi - X}(Z - ZJ] are close to zero 

Figure 10.1. Venn cliagram in which X, then tobe small (be: 
Y, and Z are correlated. 

cause the bias term is the product of 
both components); but if both are likely tobe large, then the bias is likely 
to be quite large. 

Moreover, the equation also suggests the likely direction of the bias. „. . 
All we have said thus far is that the coefficient f31 will be biased- that is, it 
will not equal its true value. But will it be too large or too small? If we have 
good guesses about the values of ß2 and the correlation between X and Z, 
then we can suspect the direction of the bias. For example, suppose that 
ßi. ß2 , and the correlation between X and Z are all positive. That means 
that our esrimated coef.ficient ßi will be larger than it is supposed to be, 
because a positive number plus the product of two positive numbers will 
be a still-larger positive number. And so on. 5 

To better understand the importance of controlling for other possible 
causes of the dependent variable and the importance of the relationship 
(or the lack of one) between X and Z, consider the following graphical 
illustrations. In Figure 10.1, we represent the total variation of Y, X, and 
Z each with a circle. The covariation between any of these two variables -
or among all three - is represented by the places where the circles overlap. 
Thus, in the figure, the total variation in Y is represented as the sum of the 
area a + b + d + f. The covariation between Y and Xis represented by the 
area b+d. 

Note in the figure, though, that the variable Z is related to both Y and 
X (because the circle for Z overlaps with both Y and X). In particular, the 
relationship between Y and Z is accounted for by the area f + d, and the 
relationship between Z and Xis accounted for by the area d + e. As we 
have already seen, d is also a portion of the relationship between Y and 
X. If, hypothetically, we erased the circle for Z from the figure, we would 

5 With more than two indcpcndcnt variables, it bccomcs more complcx to figurc out thc 
duection of the bias. 

1. X and Z are correlated. Their covariation is
represented by d+ e.

2. The graph makes transparent that Z is related to
both, Y and X.

3. The relationship between Y and X statistically
controlling for Z is accounted for by the area of b.

4. Not controlling for Z in the model would attribute
b+ d to the variation of X that is shared with Y.

5. If we fail to control for Z we will end up with a
biased estimate of X’s effect on Y.
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The Course

Roadmap
• Understand and model stochastic processes
• Understand statistical inference
• Implement it mathematically and learn how to estimate it

• OLS
• Maximum Likelihood

• Implement it using software
• R
• Basic programming skills
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Overview: Week 6

Significance Testing

Significance Test for One Coefficient: CI, t-Test and p-value

Categorical Variables in Regression

Interactions
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Significance Testing



Statistical Inference for Linear Models

• This lecture: Classical statistical regression inference including
• confidence intervals for estimated coefficients,
• significance tests for estimated coefficients using confidence intervals, t-test, p-values

• Next lecture: Interpretation of regression inference including
• how to make results accessible to non-technical readers,
• how to learn about quantities of interest,
• how to display uncertainty of own results, and
• which tools to use (predicted probabilities, expected values, and first differences).
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Confidence Intervals for Regression Coefficients

• To assess the uncertainty around our estimates, we construct confidence intervals,
such that this interval contains the true population parameter in, e.g., 95% of the
hypothetically repeated samples.

• More formally, let α (0 < α < 1) be the level of significance and δ be a positive
number. Then, the confidence interval around βj is defined as

Pr(β̂j − δ ≤ βj ≤ β̂j + δ) = 1− α.

• One strategy: Assume normal sampling distribution (i.e., normal approximation) and
given that we know the standard errors of the coefficients we can construct
confidence intervals (i.e., δ ≈ 1.96 · SE(β̂j))
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Confidence Intervals for Regression Coefficients

• Other strategy: We analytically construct a confidence interval using a normalized
test statistic. The test statistic t∗ for our hypothesized value of βj can be calculated
as

t∗ =
β̂j − βj

SE(β̂j)
=

β̂j − βj√
σ̂2∑n

i=1(xji−x̄j)2
∼ t(n−k−1).

• Since we use σ̂2 instead of the true population variance, σ2, the test statistic is no
longer normally distributed, but t-distributed with n− k− 1 degrees of freedom,
where k is the number of independent variables.
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Confidence Intervals for Regression Coefficients

• With such a normalized test statistic, t∗, and equal probability density at the lower
and upper tails, a confidence interval for the true value βj is given as

Pr(t(α
2 )

≤ t∗ ≤ t(1−α
2 )
) = 1− α.

• Substituting in our explicit expression for t∗ and relying on the symmetry of the
t-distribution, yields

Pr(β̂j − t(1−α
2 )

· SE(β̂j) ≤ βj ≤ β̂j + t(1−α
2 )

· SE(β̂j)) = 1− α.

• Or more simply, we have the known expression:

β̂j ± t(1−α
2 )

· SE(β̂j)

• When n− k− 1 > 120, then one can use the 97.5 percentile of the standard normal
(i.e., 1.96) rather than the t-distribution (in fact, use 2 as a rule-of-thumb (!), i.e.
δ ≈ 2 · SE(β̂j)) to construct a 95% confidence interval around the true value βj.
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Is 95% Good Enough? Type I and Type II Errors

In general, though, tests are flawed. Tests detect things that don’t exist (false positive),
and miss things that do exist (false negative).

• Statistical inference is basically a decision problem between two alternatives:
• H0: Null hypothesis.
• HA: Alternative hypothesis.

• A 95% confidence interval means that under repeated experiments the given interval
includes the true parameter, β, 95 out of 100 times. Hence, with H0 being true, we
falsely reject H0 5 times out of 100 even though we should not have done so (type I
error).
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Is 95% Good Enough? Type I and Type II Errors

H0 is true H0 is false

Not reject H0 correct Type II error
decision (false negative)

Reject H0 Type I error correct
(false positive) decision

• Consider the errors for a case in which the hypotheses are “H0: No disease” and “HA:
Disease”. Which error would you “prefer”?
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Type I and Type II Errors

• Assume that H0 is that a patient has no disease.

H0: No disease HA: Disease

Not reject H0 correct Type II error
decision (false negative)

Reject H0 Type I error correct
(false positive) decision

• Then, for a type I error, the patient is told that s/he has the disease even though
s/he does not. The test to diagnose the patient is positive (“Yes, you have the
disease”), but falsely so.

• For a type II error, however, the patient is not diagnosed of having a disease even
though s/he does have it. The test is negative (“No worries, you do not have the
disease”), but falsely so.
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Hypothesis Test for Coefficient Using t-Test

• In testing statistical significance of a regression coefficient, we usually want to know
if our estimated coefficient β̂j is different from zero, i.e.: β∗

j ̸= 0.
• We test the null hypothesis about the true population parameter, βj, against the
(two-sided) alternative hypothesis:

• H0 : β∗
j = 0

• HA : β∗
j ̸= 0

• Thus, we construct a test statistic, t∗, given our hypotheses about β∗
j

t∗ =
β̂j − β∗

j

SE(β̂j)
=

β̂j

SE(β̂j)
∼ t(n−k−1).

• We reject the null hypothesis, H0, at the α−% significance level if

| t∗ |> t(1−α
2 ,n−k−1) (“critical value”),

where n− k− 1 are the degrees of freedom with k independent variables.
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Another way to say the same thing: Computing p-Values

• So far we used a classical approach to hypothesis testing:
• Specifying alternative (and null) hypothesis
• Choose significance level (α)
• Get the respective critical value (t(1−α

2 ,n−k−1)) and compare it to test statistic (t∗)
• H0 is either rejected or not rejected at a chosen significance level

• Different scholars might prefer different significance levels (and the null might be
not rejected at the 5% but at the 10% level. Which level is correct?)
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Another way to say the same thing: Computing p-Values

• Alternative strategy: Given the observed t∗, what is the smallest significance level at
which the null hypothesis would be rejected? This is called the p-value (p ∈ (0, 1)).

p = Pr(|t(n−k−1)| > |t∗|) = 2Pr(t(n−k−1) > |t∗|)

where Pr(t > t∗) is the area to the right of t∗ (given (n− k− 1)df)
• Small p−values are evidence against the null, large p-values provide little evidence
against the null.

• Say p = .03, then we would observe a value of the t statistic as extreme as we did in
only 3% of all random samples if the H0 is true. Thus, this is pretty strong evidence
against the null. Hence, H0 is not likely to be true.

QM 2021 | Linear Regression: Statistical Inference, Dummies and Interactions 14



Categorical Variables in
Regression



Categorical Variables in Regression: Introduction

• In political science, variables are often qualitative or categorical.
• We can easily include qualitative information as independent variables in our
regression model.

• Examples for qualitative data are:
• Vote choice (Did vote or did not vote).
• Gender (Is male or female).
• Regime type (Is a democracy or an autocracy).
• Membership status (Is a EU member state or not).
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Dummy Variables

• Qualitative information often comes in the form of binary information. These
zero-one variables are called dummies or dummy variables.

• These variables come with a trade-off:
• Downside: Loss in information.
• Upside: Dummy variables are easy to interpret.

• Good coding practice: Name your variable after the “1” category, e.g., it should be
“female” and not “gender”. This helps to avoid confusion!

• For further notes on “Coding style and Good Computing Practice”, see Jonathan
Nagler’s website and, more recently a very interesting and helpful article by Nick
Eubank (2016) in The Political Methodologist.
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Example: Income and Education – A Gender Gap

• Suppose we want to examine the relationship between education and income
among women and men.

• We collected the following fake data:

4 6 8 10 12

25000

30000

35000

Education

In
co
m
e
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Example: Income and Education – A Gender Gap

• Suppose we want to examine the relationship between education and income
among women and men.

• We collected the following fake data:

4 6 8 10 12

25000

30000

35000

Education

In
co
m
e

Female
Male
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Example: Income and Education – A Gender Gap

• Our model: Income = β0 + β1 ∗ Education+ β2 ∗ Female+ ϵ

• Suppose we find the following estimates:

̂Income = 25934+ 894 · Education− 3876 · Female

• Using the Female-dummy, we get two regression lines. One for males and one for
females:

• For females (if Female = 1) we obtain:

̂Income = (25934− 3876 · 1) + 894 · Education = 22058+ 894 · Education.

• For men (if Female = 0) we obtain:

̂Income = (25934− 3876 · 0) + 894 · Education = 25934+ 894 · Education.
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Example: Income and Education – A Gender Gap

• Solid line for males: ̂Income = 25934+ 894 · Education
• Dashed line for females: ̂Income = 22058+ 894 · Education
• This illustrates that dummy variables shift the intercept up or down.

4 6 8 10 12

25000

30000

35000

Education

In
co
m
e

Female
Male
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Using Dummy Variables for Multiple Categories

• Dummy variable trap.
• Base group is represented by the intercept.
• If we were to add a dummy variable for each group, we would introduce perfect
multi-collinearity.

• Statistical software usually warns you of this.
• Solution: Split a k-category variable into k− 1 binary dummies.
• Interpretation is always relative to the baseline category.
• Suppose you analyze the effect of different social classes (lower, middle upper) on
income (Ŷ = β̂0 + β̂1D1 + β̂2D2):

Dummy Variables

Social Class D1 D2

lower 0 0 Ŷ = β̂0

middle 1 0 Ŷ = β̂0 + β̂1

upper 0 1 Ŷ = β̂0 + β̂2
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Cleverly using Dummy Variables for Multiple Categories

• What if we want to test the difference between middle and upper class?
• Cleverly construct dummy variables such that an estimated coefficient identifies this
difference.

Dummy Variables

Social Class D̃1 D̃2

lower 0 0 Ŷ = β̂0

middle 1 0 Ŷ = β̂0 + β̂1

upper 1 1 Ŷ = β̂0 + β̂1 + β̂2

• When estimating Ŷ = β̂0 + β̂1D̃1 + β̂2D̃2 then the estimated coefficient of the second
dummy, β̂2, represents (by design!) the difference between middle and upper class.
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Interactions



Modeling Interactions

• So far, we have only been adding variables in an additive manner, e.g.

Y = β0 + β1X1 + β2X2 + . . .+ ϵ.

• Suppose, however, we want to test a hypothesis that the relation between an
independent variable Xi and dependent variable Y depends on the value of another
dummy variable D.

• Think of: Income = β0 + β1Education+ β2Female+ β3Education · Female+ ϵ

• The effect of Xi on Y is also called conditional because the hypothesized effect is
conditional on D.

• In other words, if D is 1, the relation between Xi and Y is different than when D is zero.
• This is what we also call an interaction effect.
• Interaction model: Y = β0 + β1X1 + β2D+ β3X1 · D+ . . .+ ϵ
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Modeling Interactions: Interpretation

• An interaction effect conditions the effect of an independent variable (e.g.,
Education) on the dependent variable.

• Interaction model if D = 0 (condition is absent):

Y = β0 + β1X1 + β20+ β3X10+ ϵ = β0 + β1X1 + ϵ

• Interaction model if D = 1 (condition is present):

Y = β0 + β1X1 + β21+ β3X11+ ϵ = (β0 + β2) + (β1 + β3)X1 + ϵ

• In other words, we get an intercept shift and a change in slopes.
• Do not interpret constitutive terms (i.e, β̂1 and β̂2) as if they are unconditional effects!
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Modeling Interactions: Interpretation

Although these types of hypotheses are particularly prevalent in the field of comparative
politics where the importance of context or ‘‘context conditionality’’ is strongly em-
phasized, they are increasingly common in the other subfields of political science
(Franzese 2003b). Conditional hypotheses can easily be tested using multiplicative
interaction models. To see this, assume that Y and X are continuous variables, while Z is
a dichotomous variable that equals one when the required condition is met, and zero
otherwise.

Y ¼ b0 þ b1X þ b2Z þ b3XZ þ ! ð1Þ

It is relatively easy to see that the model presented in Eq. (1) captures the intuition
behind our hypothesis.2 This is because when condition Z is absent, i.e., Z ¼ 0, Eq. (1)
simplifies to:

Y ¼ b0 þ b1X þ !: ð2Þ

It should now be clear that b1 in Eq. (1) captures the effect of a one-unit change in X on Y
when condition Z is absent (@Y@X given Z ¼ 0 is b1). When condition Z is present, Eq. (1) can
be simplified to:

Y ¼ ðb0 þ b2Þ þ ðb1 þ b3ÞX þ !: ð3Þ

This illustrates that the effect of a one-unit change in X on Y when condition Z is present is
now b1 þ b3 (@Y@X given Z ¼ 1). Since our hypothesis is that Y is increasing in X if and only
if Z is present, then we should expect to find that b1 is zero and that b1 þ b3 is positive.
These two implications necessitate that b3 should be positive. Figure 1 graphically

Fig. 1 A graphical illustration of an interaction model consistent with hypothesis H1.

2There is no requirement that the form of the interaction term in interaction models be the product of the
constitutive terms X and Z as is the case here. However, we focus on these multiplicative interaction models
because they are the most common in political science.
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Modeling Interactions with Continuous Variables

• Interactions between dummy variables and continuous variables are the easiest to
understand.

• But, we can interact continuous variables as well.
• Assume instead of a dummy D, X2 to be continuous.
• Example: Temporally-proximate presidential elections will reduce the effective
number of electoral parties if and only if the number of presidential candidates is
sufficiently low.

• Thus,

ElectoralParties = β0 + β1Proximity+ β2PresidentialCandidates
+ β3Proximity · PresidentialCandidates+ ϵ
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Modeling Interactions with Continuous Variables

• In this case, the effect of the independent variable on the dependent variable
gradually changes as another variable changes.

Y =β0 + β1X1 + β2X2 + β3X1X2 + . . .+ ϵ

Y =β0 + β2X2 + (β1 + β3X2) · X1 + . . .+ ϵ

• Marginal effect of X1 on Y (i.e., δY
δX1 = β1 + β3X2) represents the effect of change in X1

on the expected change in Y, especially when the change in the independent
variable (X1) is infinitely small (marginal).

• The standard error of this marginal effect is (next week you will understand how to
get variances and covariances):

σ̂ δY
δX1

=

√
var(β̂1) + X22var(β̂3) + 2X2cov(β̂1, β̂3)

• Of course, you may also interpret the marginal effect of X2 on Y analogously.
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Modeling Interactions with Continuous Variables

H3: Temporally-proximate presidential elections will reduce the effective
number of legislative parties if and only if the number of presidential
candidates is sufficiently low.

Using data from 522 legislative elections from 1946 to 2000, the author tests his
hypothesis with the following model:

ElectoralParties ¼ b0 þ b1Proximityþ b2PresidentialCandidates

þ b3Proximity*PresidentialCandidates

þ b4Controlsþ !;

ð14Þ

where ElectoralParties and PresidentialCandidates measure the effective number of
electoral parties and presidential candidates, Proximity is a continuous measure of the
temporal proximity of presidential and legislative elections, and Controls refers to a series
of control variables that include social heterogeneity and electoral system characteristics.
Results from this model are shown in Table 1.

The results in Table 1 indicate that temporally proximate presidential elections have
a significant reductive effect on the effective number of electoral parties when there are no
presidential candidates (b1 is negative). Note that this is substantively meaningless since
there are no cases in which there are presidential elections and no presidential candidates.
We know from the fact that the coefficient on Proximity*PresidentialCandidates is
positive that this reductive effect declines as the number of presidential candidates
increases. However, there is no way of knowing from the information in Table 1 what the
impact of temporally proximate presidential elections is when the number of candidates is
greater than zero. Recognizing that this traditional table of results can only throw limited
light on his hypothesis, the author presents a simple figure (Fig. 3) that graphically
illustrates how the marginal effect of temporally proximate presidential elections changes
across the observed range of presidential candidates.14

The solid sloping line in Fig. 3 indicates how the marginal effect of temporally-
proximate presidential elections changes with the number of presidential candidates. Any
particular point on this line is @ElectoralParties

@Proximity ¼ b1 þ b3PresidentialCandidates. 95%

Table 1 The impact of presidential elections on the effective number of
electoral parties. Dependent variable: Effective number of electoral parties

Regressor Model

Proximity %3.44** (0.49)
PresidentialCandidates 0.29* (0.07)
Proximity*PresidentialCandidates 0.82** (0.22)
Controls ——
Constant 3.01** (0.33)
R2 0.34
N 522

*p , 0.05; **p , 0.01 (two-tailed). Control variables not shown here.

Robust standard errors clustered by country in parentheses.

14It is not always the case that the observed range of the modifying variable is the most substantively meaningful
or informative range to employ in these figures. The specific question being addressed by the analyst should
determine the relevant range of the modifying variable.
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confidence intervals around the line allow us to determine the conditions under which
presidential elections have a statistically significant effect on the number of electoral
parties—they have a statistically significant effect whenever the upper and lower bounds
of the confidence interval are both above (or below) the zero line. It is easy to see that
temporally proximate presidential elections have a strong reductive effect on the number of
electoral parties when there are few presidential candidates. As predicted, this reductive
effect declines as the number of presidential candidates increases. Once there are more
than 2.9 effective presidential candidates, presidential elections no longer have a significant
reductive impact on legislative fragmentation. If one examines only those countries in
which presidential elections take place, roughly 60% of legislative elections between 1946
and 2000 have occurred when there are fewer presidential candidates than this. A
conscientious analyst will report the percentage of the sample that falls within the region of
significance as the author does here so that the reader can better judge the substantive
implications of the results. The point is that simply having a significant marginal effect
across some values of the modifying variable is not particularly interesting if real-world
observations rarely fall within this range.

This example illustrates that it is extremely difficult and often impossible to evaluate
conditional hypotheses using only the information provided in traditional results tables.
Moreover, it shows that it is relatively simple to evaluate the marginal effect of some
variable X across a substantively meaningful range of its modifying variable(s) with
a simple figure. Our hope is that analysts who use interaction models will move beyond
traditional results tables when evaluating their conditional hypotheses. Here, we have
presented just one way in which analysts might want to go about doing this.

The examples that we have used in this article have all involved a continuous dependent
variable. However, it is important to note that all of the points that we have made regarding
the specification and interpretation of interaction models are directly applicable to
situations in which the analyst has a limited dependent variable. Nothing of importance
changes. The analyst who wishes to test a conditional hypothesis should still use an
interaction model. This requires explicitly modeling the hypothesized conditionality by

Fig. 3 The marginal effect of temporally proximate presidential elections on the effective number of
electoral parties.

76 Thomas Brambor et al.
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