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The Course

Roadmap

• Understand and model stochastic processes
• Understand statistical inference
• Implement it mathematically and learn how to estimate it

• OLS
• Maximum Likelihood

• Implement it using software
• R
• Basic programming skills
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Quiz

Which of the following statements relating to the assumption of the OLS model (aka
Gauss-Markov assumptions) are correct?

1. Across repeated samples X is normally
distributed.

2. Our model does on average correctly
predict the mean of Y given X.

3. X is trichotomous, i.e. it has only three
different values.

4. Across repeated samples the errors are
identically distributed independent of
the values of X.

5. The distribution of the errors has the
same variance as the distribution of Y
conditional on X.
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Midterm



Logistics

• The midterm will take place Wednesday, 3 November 2021, 8:30-10:00, B144.
• We will start 8:30 sharp, so be on time.
• Just bring a pen. There is no need for a notebook; your exam package includes extra
pages.

• All of the material covered is relevant.
• Questions will include:

• Definitions of concepts as required in the homework.
• Questions on basic statistics.
• Multiple-choice questions (only one correct answer).
• Questions about OLS regression.

• If you are required to calculate some quantities, make sure that we can understand
where the numbers come from.

• If you are asked to calculate 95% confidence intervals, a rough approximation, i.e.,
β̂ ± 2 · SE(β̂), is fine.

• We will upload a mock exam to ILIAS.
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Simulation-based Inference



Statistical Inference in Linear Models

• Last lecture: Classical statistical regression inference including
• confidence intervals for estimated coefficients,
• significance tests for estimated coefficients using confidence interval, t-test, p-values and

• This lecture: Interpretation of regression inference including
• how to make results accessible to non-technical readers,
• how to learn about quantities of interest,
• how to display uncertainty of own results, and
• which tools to use (predicted values, expected values, and first differences).
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Quantities of Interest

• Apart from tests of statistical significance, we usually want to present quantities of
interest, which illustrate the meaning and substantive significance of our statistical
model.

• Substantive quantities are easier to interpret than raw regression coefficients and
avoid technical jargon.

• Compare the two statements:
• “The coefficient of income on campaign contribution is 0.25 and statistically significant at
the five percent level.”

• “If a respondent’s income rises by US$ 1,000, we expect her campaign contributions to
increase by US$ 250 ± US$ 50.”
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Quantities of Interest

• Presenting quantities of interests (QoI) means to express estimation results in
substantive terms (e.g., in units of the dependent variable or as probability of an
event). This includes calculating and reporting our uncertainty about these
quantities.

• A QoI is a function of the estimated coefficients (and the respective uncertainty).
• Presenting substantive effects is a sign of good empirical practice!

• It broadens your readership as it allows non-technical readers to understand your results.
• It helps you to reflect on your findings and to put them into perspective.
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Strategy for Substantive Interpretation

1. We get QoI as a function of estimated coefficients
2. Where is the uncertainty in a statistical model?
3. Use simulation to account for estimation and fundamental uncertainty
4. Create plots and tables for communicating your results
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Where is the Uncertainty?

Recall that we can write a linear regression model as

Yi ∼ N(yi|µi, σ2) stochastic

µi = Xiβ = β0 + β1x1i + β2x2i+ … systematic

1. Estimation Uncertainty: Uncertainty about what the true parameters β and σ2 of the
model are. Think of it as caused by small samples. Vanishes if N gets larger.

2. Fundamental Uncertainty: Represented by stochastic component of the model. Exists
no matter what (even if model is correct and we would have infinite many
observations and no measurement error) because of inherent randomness of the
world.
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Different Types of Quantities of Interest

• There are different types of quantities of interest, e.g., …
• Marginal effects, ∆Y/∆X: How does the DV change if the IV changes and all else is held
constant?

• Predicted values, Ŷ | X: Which value does our model predict, given a particular set of X
values?

• Expected values, E(Y | X): Which value of Y do we expect from the model, given a
particular set of X values?

• First differences, E(Y | X1)− E(Y | X2): What is the ‘causal’ effect (difference in
expectations) when we change the set of X values from X1 to X2?

• Anything you want (or your theory would suggest), as long as it is a function of the
estimated parameters of the model ...

• The simulation approach has two major advantages:
• You can simulate any quantity of interest you care about.
• Since the simulation approach generates distributions, we get uncertainty intervals for
free.
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The Simulation Approach



Basic Principles: Simulation from Regression Output

1. Set up a sampling distribution for your regression coefficients through simulation.
2. Generate quantity of interest from your model with covariates at specific values
(mostly mean for continuous and median for binary variables)

3. Summarize empirical distribution of this newly generated sample to get quantity of
interest and uncertainty.
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Univariate and Bivariate Normal Distributions

• To model estimation uncertainty we draw from normal distributions with the
coefficient as mean and standard error as standard deviation.

S ∼ N(0, 1)
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Simulation in Practice



Simulating Quantities of Interest: Five Steps

1. Get regression coefficients.
2. Generate sampling distribution to account for estimation uncertainty.
3. Choose covariate values that will be fixed during the simulation.
4. Calculate quantities of interest, such as predicted values, expected values or first
differences.

5. Calculate summary measures from simulated distribution of your quantity of interest.
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Step 1: Get Regression Coefficients

• Fit a linear model using OLS. This provides us with two central pieces of information:
• A vector of regression coefficients for the intercept and slope parameters.
• A variance-covariance matrix that captures uncertainty around coefficients.

• For example, consider our standard linear model for income;

Income = β0 + β1educ + β2female+ ε,

or more compact:
y = Xβ + ε

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 24475.06 666.30 36.73 <2e-16 ***
education 1046.84 73.81 14.18 <2e-16 ***
female -3994.81 294.80 -13.55 <2e-16 ***
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Step 1: Get Regression Coefficients

• For notational convenience, we can stack all estimated coefficients into a vector, β̂.
• Similarly, we can write a matrix, V̂, which contains the variances of the coefficients on
the main diagonal and the covariances between the coefficients on the off-diagonal.
We call such a matrix a variance-covariance matrix.

• We get:

β̂ = [β̂0, β̂1, β̂2]
′, V̂ =

 Var(β̂0) Cov(β̂0β̂1) Cov(β̂0β̂2)
Cov(β̂1β̂0) Var(β̂1) Cov(β̂1β̂2)
Cov(β̂2β̂0) Cov(β̂2β̂1) Var(β̂2)


• Hence, SE(β̂) =

√
diag(V̂).

• With our example, β̂ and V̂ look like this

β̂ = [24475, 1047,−3995]′, V̂ =

 443949 −46303 −55163
−46303 5447 564
−55163 564 86908


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Step 2: Generate Sampling Distribution

• We are interested in the estimation uncertainty around our coefficient estimates. To
do so, we draw a large number of values, n (e.g., 1,000 values).

• We usually do not only have one coefficient in our model, but p (= k+ 1) coefficients.
Thus, we set up a multivariate normal distribution.

• This distribution has the p x 1 vector of coefficients, β̂, as its mean and a variance
given by the estimated p x p variance-covariance matrix, V̂.

• n draws from such a distribution yield an n x p matrix S which is given as

S
[n×p]

= MVN (β̂, V̂)

• For our examples this yields:

S =


23810 1102 −4000
24329 1111 −4419

. . . . . . . . .

24276 1088 −4117


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Step 3: Choose Covariate Values

• Let x be a row vector accounting for an intercept and with specific values for two
covariates, x = [1, x1, x2].

• Let’s use mean values of education and gender, such that x is given as

x = [1, 8.44, 0.58].

• In practice, one chooses either reasonable covariate values that represent the
population, or conducts several simulation runs with different covariate values to
illustrate the implication of the fitted model.

• To summarize the effect of one or several covariates at once, first differences are
extremely helpful!
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Step 4: Calculate Quantities of Interest

• For each row of S we calculate our quantity of interest.
• For example, if we are interested in the expected value Ŷ = E(Y | X) we simply
compute

ev
[n×1]

= S
[n×p]

× x′
[p×1]

i.e. 
23810 1102 −4000
24329 1111 −4419

. . . . . . . . .

24276 1088 −4119

× [1, 8.44, 0.58]′ =


30793
31144
. . .

31074


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Step 5: Summarize Results

• The resulting n x 1 vector, ev, (e.g., the expected income for a typical respondent) can
be plotted and allows us to get means, quantiles and, hence, confidence intervals.
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Example: Expected Income for Men and Women

• Expected value, E(Y|X), e.g., expected income for men and women with an average
level of education:

Men: 33315
Women: 29307

• Those quantities are easily calculated by hand. But how uncertain are we about
these predictions?

• Using the simulation approach we get the following, more informative, table showing
expected income with associated 95% confidence intervals (using the 2.5% and the
97.5%-percentile of the simulated sampling distribution):

Men: 33315
[32860,33761]

Women: 29307
[28957,29699]

21



First Differences and Uncertainties I

• Another way to emphasize the difference between men and women, is to ask what
size the expected difference in income is:

E(income|women)− E(income|men)

• Using simulation, we can get an estimate of uncertainty for that difference.
• For this, set two vectors of covariates which differ on your quantity of interest, e.g.:

xwoman = [1, 8.44, 1] xmen = [1, 8.44, 0]

• Calculate vector of expected values for men and women:

evmen = S× x′men evwomen = S× x′women
• The first difference is simply the difference in expected values:

fd
[n×1]

= evwoman
[n×1]

− evmen
[n×1]

22



First Differences and Uncertainties II

Difference: -4007
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Plot of a Continuous Covariate

• Calculate expected values and confidence bound for each value of a continuous
covariate.
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How to calculate predicted values?

• Remember, the distribution of predicted values differ from the distribution of
expected values only in that it also incorporates fundamental uncertainty.

• To account for that we need to remember what we assumed about the error term.
Thus, for every expected value we simply add a random draw from N(0, σ̂2) to
account for fundamental uncertainty.

• For example, if we are interested in a concrete predicted value Ŷ | X we simply
compute

pv
[n×1]

= S
[n×p]

× x′
[p×1]

+ e
[n×1]

• The standard errors as well as the confidence intervals for predicted values are
larger than for expected values because they also account for fundamental
uncertainty of the model.
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