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The Course

Roadmap
• Understand and model stochastic processes
• Understand statistical inference
• Implement it mathematically and learn how to estimate it

• OLS
• Maximum Likelihood

• Implement it using software
• R
• Basic programming skills
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Overview: Week 8

The Classical Linear Model Assumptions

Regression Diagnostics

1. Misspecification
Monte Carlo Simulation

2. Measurement Error

3. Multicollinearity

4. Heteroskedasticity

5. Influential Observations
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Quiz

Suppose you constructed a regression model. A reviewer makes the following suggestions
to bolster your argument that you have a well-specified model. Do they make sense?

1. If your model is well specified then 95% of the observations fall within the 95%
confidence intervals around the regression line.

2. Plot a scatterplot of the residuals by Ŷ and draw lines at +/− 1 SE of the predicted
values. Roughly 2 out of 3 observations should fall between the lines.

3. When you also draw lines at +/− 2 SE of the predicted values, you should see about
95% of your observations to fall between the lines.

4. You can also use a scatterplot of first-differences instead of the residuals to check
whether your model is well specified.
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The Classical Linear Model
Assumptions



The classical linear model assumptions

1. Linearity in parameters. Our model can be written as:

Y = β0 + β1x1 + β2x2 + ...+ βkxk + ϵ

2. The zero conditional mean assumption requires that

E(ϵ|x1, x2, ..., xk) = 0

3. Error variance is constant given the data (homoskedasticity assumption), which is

Var(ϵ|x1, x2, ..., xk) = σ2ϵ

4. Errors for any two observations are uncorrelated given the data (independence assumption).
Hence,

Cov(ϵi, ϵj|xi, xj) = 0, i ̸= j
5. X is non-stochastic. Observations on our independent variables are fixed in repeated samples.
Hence, variability is due to stochastic component (i.e., in ϵ) and not due to measurement error
in X.

6. Normality of errors
ϵi ∼ N(0, σ2ϵ) 5



The classical linear model assumptions

• The OLS estimator is unbiased, i.e., E(β̂j) = βj, if the errors are independently distributed with
zero expectation and constant variance (conditions 2,3, and 4).

• Under the full CLM assumptions (+ normality of errors), the OLS estimator has minimum
variance among the unbiased estimators, i.e. it is best linear unbiased estimator (BLUE). This
is the famous Gauss-Markov Theorem.

• A succinct way to summarize the assumptions of the CLM is:

Yi = Xiβ + ϵi

ϵi ∼ N(0, σ2ϵ)

Or, alternatively:

Yi ∼ N(µi, σ2ϵ) Stochastic component
µi = Xiβ Systematic component
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Regression Diagnostics



1. Misspecification

• We already know what happens when you omit an important variable from the
regression

• The other predictors will try to “make up the difference” - and will do so unless they
are totally unrelated to the excluded variable

• But: how much are our estimates biased?
• The problem: data analysis does not help us because we don’t know whether we
omitted an important variable or whether our model is correctly specified.

• We need to investigate the statistical properties of OLS when we assume a priori that
the fitted regression model misrepresents the true data generating process.
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1. Misspecification

• Suppose we know the true data generating process. In other words, we know the
values of our parameters β0, β1, etc.

• Let the true data generating process be the following:

Y = β0 + β1x1 + β2x2 + ϵ

ϵ ∼ N(0, σ2ϵ)

• This is the standard multivariate linear model with normally distributed
disturbances. Suppose we also know that the explanatory variables x1 and x2 are
related in the following way (i.e., x1 and x2 are correlated):

x2 = δx1 + ν

ν ∼ N(0, σ2ν)

• Note that, for δ ̸= 0, as σ2ν → 0, we’ll approach exact linear dependency. As σ2ν
increases, the correlation between x1 and x2 becomes less severe. 8



1. Misspecification

• We want to compare the performance of the OLS estimators in two different
regression models:

1. Correctly specified multiple regression (true model)
2. Misspecified regression model

• Model 1: correctly specified (true model)

Y = β0 + β1x1 + β2x2 + ϵ

• Model 2: misspecified (x2 is omitted)

Y = β∗
0 + β∗

1 x1 + ϵ

• In particular, we want to compare β1 and β∗
1 to determine the size and direction of

the bias!
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1. Misspecification

• It can be shown that:

E(β∗
1 ) = β1 + β2δ̂

where δ̂ is the regression coefficient from a bivariate regression of x2 on x1.

• The expected omitted variable bias is then:

E(β∗
1 )− β1 = β2δ̂

• Thus, OLS is unbiased if
1. β2 = 0 (i.e. x2 does not appear in true model), or if
2. δ̂ = 0 (i.e. if x1 and x2 are uncorrelated)
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Monte Carlo Simulation

Rather than analytical, we can also use a computational approach, relying on Monte
Carlo simulations, to examine the consequences of violating the classical linear model
assumptions. You have done this in the lab already several times.

• A Monte Carlo simulation is a method for estimating the value of an unknown
quantity using principles of inferential statistics, i.e. through drawing random
samples from a (population) distribution

• The key is: we need to “know” (i.e., assume) the “true” values of the population
parameters. We do this by defining the true data generating process (through a
regression equation including draws from a normal distribution to represent the
error term) and simulating observations for the independent and dependent
variables.
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Monte Carlo Simulation

1. We generate “fake” (i.e., simulate) data, X, and assume that we know the true
coefficients, β and, hence, the true data generating process (including ϵ). Of course,
this is never true with real data.

2. Given the data, X, and the true coefficients, β and random draws from a normal
distribution to represent the error term, we calculate the outcome variable Y from
the assumed “true” linear model.

3. Given Y and X, we can run an OLS regression, and extract the estimated coefficients β̂.
4. If we repeat steps (2) and (3) often enough, e.g., 1,000 times, we generate a empirical
sampling distribution consisting of 1,000 different regression coefficients.

• Note that this is very similar to what we have done last week, except that we now
simulate based on the assumed “truth”, to see what happens when we violate
assumptions.

• When generating QoI last week, we approximated the sampling distribution of the
regression coefficients to account for estimation uncertainty and added random
draws from the error distribution to account for fundamental uncertainty. 12



1. Misspecification

1. Set number of observations and “true” parameter
values for β0, β1, β2, δ.

2. Set values for x1 and generate values for x2 as
sum of δx1 and a random draw from N(0, σ2ν).

3. Generate Y using the true data generating process
including a random draw from N(0, σ2ϵ).

4. Run two regressions (correctly specified and
misspecified model) and record β̂1 and β̂∗

1

5. Repeat steps (3) and (4), say, 1,000 times, each
time recording the coefficients

6. Plot and compare simulated sampling
distributions for β1 and β∗

1
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2. Measurement Error

• Recall one of our classical linear model assumptions:

X is non-stochastic. This means that the observations on our independent variables
are fixed in repeated samples.

• This implies no measurement error in X

• Recall how we set up X in our Monte Carlo study:

X was generated once and held fixed in each simulation. The only stochastic
component was the generation of the error terms (disturbances).

• But: measurement error might exist. Simulate it as robustness test of your findings!
E.g., how much measurement error does there have to be before coefficient turns
insignificant? And is that realistic?
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2. Measurement Error

• Our theories often refer to constructs that are difficult to observe directly

• Yet, we almost always assume a perfect measurement process.

• But most of our data in political science are poorly measured

• Examples
• Job approval of prime ministers as measured in a poll
• Degree of democracy (construction of “democracy scales” through an additive index, e.g.
POLITY)

• Ideology of voters (issue questions in surveys)
• Ideology of political parties (coding of manifestos, or survey of “experts”)
• Policy area of legislation (coding of legislation into a policy area can lead to
misclassification)

• Reported vs actual income
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2. Measurement Error

• Consider the following simple regression model:

Y = β0 + β1X+ u

• The problem is: we do not observe X, but X∗ (measured with error e) instead:

X∗ = X+ e

e ∼ N(0, σ2e)

• Since X = X∗ − e, we are estimating in the regression:

Y = β0 + β1(X∗ − e) + u

re-arranging leads to:
Y = β0 + β1X∗ + (u− β1e)
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2. Measurement Error

• We assumed that the measurement error e is uncorrelated with the unobserved
explanatory variable X.

• This means that the measurement error e must be correlated with our observed
explanatory variable X∗.

• Recall CLM assumption that X’s are fixed and not correlated with the errors. The
correlation between the observed explanatory variable and the error will cause
biased estimates. When estimating via OLS, we get asymptotically:

β̂1 →
σ2u

σ2u + σ2e
β1
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2. Measurement Error

• This attenuation bias, which is introduced through measurement error, biases our
coefficients towards zero.

• Hence, we underestimate the true effect.
• Why is this important?
• It is important because the estimated effect in a simple regression model might turn
out to be statistically insignificant although the true effect is larger (and, thus,
potentially significant).

• In the multivariate case, this problem gets more severe. The true effect can be
under- or overestimated
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2. Measurement Error

-6 -4 -2 0 2 4 6

-5
0

5
10

No Measurement Error in X

X

Y

-6 -4 -2 0 2 4 6

-5
0

5
10

Measurement Error in X

Xstar

Y

19



2. Measurement Error

• We can use our Monte Carlo setup to simulate data and run regressions on X with
measurement error added and on X without measurement error.

• With an attenuation bias in the asymptotics, given as

β̂1 →
σ2u

σ2u + σ2e
β1,

the size of the measurement error can be defined by varying σ2e.
• Expectation: sampling distribution of β1 (for X with measurement error) is biased
towards zero.

• Robustness test: Find out which level of measurement error does render our
coefficient to be still significant.
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2. Measurement Error

• So far, measurement error was in the independent variable. But what happens if the
error is in the dependent variable?

• Assume that we are modeling Y, but we only observe Y∗ (measured with error u):

Y∗ = Y+ u

• Hence, the model we estimate is

Y+ u = β0 + β1X+ e.

• Rearranging leads to:
Y = β0 + β1X+ (e− u)

• Does this cause bias?
• As long as E(u | X) = 0, i.e., measurement error is uncorrelated with X, the OLS estimators
are unbiased, but the variance is inflated (larger variances, larger standard errors).

• Thus, measurement error in Y is no big deal!
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3. Multicollinearity

• Multicollinearity refers to high correlation between two or more independent
variables. It is not limited to pairwise correlation.

• But multicollinearity can lead to instability in the regression estimates - the same
consequence that follows from having a small sample

• Recall the sampling variance of the OLS estimator in multiple regression:

Var(β̂j) =
σ2ϵ∑

(xij − x̄j)2(1− R2j )

σ2ϵ = error variance (noise)∑
(xij − x̄j)2 = sample variation in xj

R2j = linear relationship among independent variables, i.e. the R2 from a regression of xj on all
other independent variables.
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3. Multicollinearity

Thus, given Var(β̂j) = σ2ϵ∑
(xij−x̄j)2(1−R2j )

, we get:

• As R2j → 1, more sample variation in xj can be explained by the other independent
variables, and Var(β̂j) increases.

• The consequence on the variance of the estimator makes intuitive sense: When the
independent variables are strongly correlated, the data contain little information
about the impact of, say, x1 on Y holding x2, ...., xk constant, because there is little
variation in x1 when x2, ..., xk is fixed.

• Strong, but less than perfect, multicollinearity substantially increases the sampling
variances of the OLS coefficients. Consequently, this also increases confidence
intervals & standard errors of the coefficients. Thus, it also affects hypothesis
testing.

• The good news is: even strong multicollinearity does not bias our coefficients!
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3. Multicollinearity

• A correlation table gives you a first idea. Pairwise correlations cannot reveal highly
collinear linear combinations, though.

• A good strategy to detect it is to calculate the variance-inflation factor for each
independent variable, which is defined as

VIFj =
1

(1− R2j )
,

where R2j is again the R2 measure from a regression of xj on the remaining
explanatory variables.

• A problem with VIF is that we need to determine an arbitrary threshold above which
we consider multicollinearity to be high.

• Sometimes, 10 is chosen as such as threshold value, but this does not necessarily
imply that the standard error would be too large.

• It is unclear what “too large” means in this context.
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3. Multicollinearity
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3. Multicollinearity

• There is no good way to reduce variances of unbiased estimators other than to collect more
data (increase sample size!).

• Possibly simplify model, i.e. drop variables to reduce collinearity. Unfortunately, dropping
relevant independent variables leads to omitted variable bias.

• Possibly combine variables (e.g. “participation index”, “legislator’s expertise”). This way we
would no longer be trying to estimate the partial effect of each separate category (e.g.
committee assignments, number of cosponsored bills, etc.). May seem reasonable if we are
asking questions that are too subtle for the available data to answer with any precision.

• If we believe certain variables belong in the model (e.g., to infer causality), then there is not
much we can do about it. Our theories should tell us what to include, but we may be able to
use different operationalizations.

• If we expect to see an effect, but confidence intervals appear too wide, checking VIF is a good
diagnostic tool.
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4. Heteroskedasticity

• Recall the CLM assumption of constant error variance (homoskedasticity). It is
necessary to justify the usual t-tests, F-tests, and confidence intervals for OLS
estimation.

• But: It is common for the variance of the errors to increase or decrease with the
level of the independent variable.

• Such a pattern is called heteroskedasticity. OLS standard errors are no longer valid
for constructing confidence intervals or hypothesis testing.

• Heteroskedasticity can be detected in a plot of residuals against fitted values
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4. Heteroskedasticity
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4. Heteroskedasticity

• The error variance might vary because of model specification errors (i.e., the model
is not correctly specified).

• Transform your independent variables and potentially the depend variable (using log’s,
square-roots or square’s). Plot residuals against the respective variables to find
candidates for this.

• or include interaction effects.

• Heteroskedasticity can arise as a result of the presence of outliers (more later today!)
• Instead of using OLS standard errors, we can use heteroskedasticity-robust
(Huber-White or robust) standard errors for β̂ as a statistical fix. More about this
next semester.

• Another better alternative is to model heteroskedasticity explicitly. If you are
interested in how to do this, register with the “Advanced Methods Course” (AQM)
next semester.
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5. Influential Observations
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5. Influential Observations

• The above examples show that OLS estimation can be very sensitive to singletons.
• Therefore, it is important

• to identify observations that may be dominating the estimates, and
• to assess how results change when such dominating data points are dropped.

• Some terminology is needed here:
• Outlier: An observation with a large residual; may indicate a sample peculiarity, a data
entry error, or some other problems.

• Leverage: An observation with an extreme value on an independent variable is said to
have high leverage. Leverage is a measure of how far an independent variable deviates
from its mean. These leverage points may have an effect on the estimate of regression
coefficients.

• Influence: An observation is said to be influential if removing the observation
substantially changes the estimate of coefficients.
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5. Influential Observations: Cook’s Distance

• The Cook’s distance is a measure of influence, which aggregates outlier and leverage
properties.

• For each observation i Cook’s distance is defined as

Di =
∑n

j=1(ŷj − ŷj\i)2

(k+ 1)σ̂ ,

where ŷj is the predicted value for j with all data, ŷj\i is the predicted value for j
when observation i is dropped, k is the number of independent variables, and σ̂ is
the estimated error variance.

• The measure of Cook’s distance is based on the difference in predicted values with
and without particular observations.
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5. Influential Observations: Cook’s Distance

• The rule of thumb is to be suspicious of observations with Di > 1.
• Bollen and Jackman (1990) suggest to determine the threshold as 4/n where n is the
sample size.

• So what to do?
• Create a dummy in your dataset which is “1” when Cook’s distance is too large.
• Respecify model to account for outliers. Do they have something in common?
• Potentially drop those observations from analysis (and acknowledge that). Do you still
get the same results?
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