

Quantitative Methods in Political Science: Logit and Probit Models

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova | David M. Grundmanns Week 11 - 17 November 2021

Roadmap

- Understand and model stochastic processes
- Understand statistical inference
- Implement it mathematically and learn how to estimate it
 - OLS
 - Maximum Likelihood
- Implement it using software
 - ۰R
 - Basic programming skills

Modeling Dichotomous Dependent Variables Motivation Limited Dependent Variable Models The Generalized Linear Model Approach

Estimation

Interpretation

Example: Determinants of Civil War

Assessing Model Fit

Modeling Dichotomous Dependent Variables

Motivating Binary Dependent Variable Models

- Often our dependent variable is not continuous but binary.
- There are many examples in the social sciences:
 - A voter's choice to go to the polls.
 - A politician's choice to vote "yes" or "no" in legislation (roll call data).
 - A government's decision to implement an EU directive or not.
 - A student's response in an exam can be correct or incorrect.
- In all these cases we have observations on a binary variable, where $y_i = \{0, 1\}$ with i = 1, ..., n.
- The basic problem is: How do we estimate regression models when our dependent variable is a dummy?

Recall that we can write a linear regression model as

$$Y_i \sim N(y_i|\mu_i, \sigma^2)$$
 stochastic
 $\mu_i = X_i\beta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$ systematic

We will generalize that and write any statistical model as

$$Y_i \sim f(y_i|\theta_i, \alpha)$$
 stochastic
 $\theta_i = g(X_i, \beta)$ systematic

Modeling Binary Dependent Variables

- Statistical modeling always operates through modeling stochastic processes.
- Hence, we need a probability model that generates "0" and "1" as outcomes.
- We already know the Bernoulli distribution as a discrete distribution.
- This distribution distinguishes between successes (coded as 1) and failures (coded as 0), where the probability to get a success is given as π and the probability for failure is 1π .
- Since the Bernoulli distribution takes on only two values as does our dependent variable, we can model each single observation, y_i , as an outcome from a Bernoulli experiment. Hence, our stochastic component (with $\theta = \pi$) is

 $Y_i \sim Bernoulli(\pi_i).$

• With this, we get:

 $\pi_i = P(y_i = 1) = E(y_i)$ with density $f(y_i \mid \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$

• The density function gives back the probability to either get $y_i = 1$ or $y_i = 0$ for a given success probability π_i .

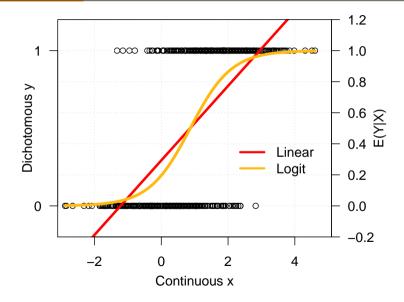
Modeling Binary Dependent Variables

- While we observe a dependent variable, y_i , with i = 1, ..., n, our goal is to model the (unobservable) predicted probability $\pi_i (\in [0, 1])$, the expectation of observing y = 1 across repeated Bernoulli trials using a function g of covariates, $X = \{x_1, ..., x_k\}$ and respective parameters, i.e. the systematic component.
- Thus, the statistical model looks as follows

 $Y_i \sim Bernoulli(\pi_i)$ stochastic component $\pi_i = g(X_i, \beta_i)$ systematic component

- But why not simply use OLS?
 - OLS does not guarantee that predicted probabilities fall into the unit interval.
 - OLS necessarily induces heteroskedasticity since y_i only takes on two values.
 - OLS assumes unrealistic functional form for many applications, i.e., a unit change in x_k results in a constant change in $\hat{\beta}_k$ in the probability of an event holding all other variables constant.
- Hence, we need a different type of model.

Model Predictions from OLS and Logit Model



Generalized Linear Model (GLM) Formulation

• To avoid *out-of-bounds* predictions, i.e., $\eta_i \notin [0, 1]$, we need to force the linear predictor

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} = X_i \beta$$

to lie inside the unit interval.

- We could do this by restricting the values of $\beta_0, ..., \beta_k$. Yet, this results in overly complex models.
- Instead, we choose a function, g, which maps the linear predictor, η_i , into the unit interval.
- \cdot We can write this as

$$\pi_i = g(\eta_i) = g(X_i \beta).$$

- The appealing feature is that this response function, g, "automatically" ensures that the linear predictions η_i lie inside [0, 1].
- The CDF of the logistic distribution function and the normal distribution function are most often used as response functions.

Logit Model

• The response function $g(\eta)$ is related to η via the inverse function $h = g^{-1}$, called the link function:

$$\eta_i = h(\pi_i)$$

• If we choose the CDF of the logistic distribution function as a response function, we get

$$\pi_i = g(\eta_i) = \frac{exp(\eta_i)}{1 + exp(\eta_i)} = \frac{1}{1 + exp(-\eta_i)}$$

- The trick now is that we can use our systematic component $X_i\beta$ to reparameterize η_i , which allows us to write the success probability π_i as a function of our covariates and coefficients.
- With this, we get as predicted probabilities:

$$\pi_i = P(y_i = 1) = \frac{exp(X_i\beta)}{1 + exp(X_i\beta)}$$

• This model is referred to as logit model.

• If we do not choose a logistic response function, but use the CDF of the standard normal distribution function ($\mu = 0, \sigma = 1$), we get

$$\pi_i = \Phi(\eta_i) = \Phi(X_i oldsymbol{eta})$$

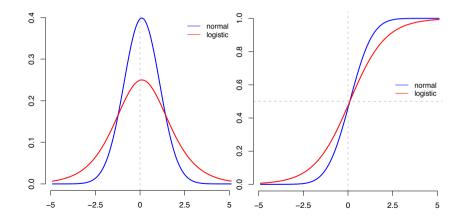
• Again, we can derive predicted probabilities which are given as

$$\pi_i = P(y_i = 1) = \Phi(X_i \beta)$$

• This model is referred to as probit model.

Logistic and Standard Normal Distribution

- The logistic distribution has fatter tails.
- Logit and probit coefficients differ by a factor of about 1.81, but produce almost identical results.



Estimation

Likelihood Function for a Binary Dependent Variable

• Consider a binary variable $y_i \sim Bernoulli(\pi_i)$ with

$$\pi_i = P(y_i = 1) = E(y_i)$$

• The density for one realization is given as

$$f(y_i \mid \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1-y_i}$$

• Since all observations *y_i* are independent realizations the likelihood to observe the data that we did observe is given by the the following expression:

$$L(\boldsymbol{\pi}) = \prod_{i=1}^{n} f(y_i \mid \pi_i) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

with

$$\pi_i = E(y_i \mid x_i) = g(X_i \beta).$$

• When estimating such a model we need to maximize the likelihood *L*, or for convenience rather *log L* to find those parameter vectors ($\hat{\pi}$ or, $\hat{\beta}$), that most likely generated the data.

• Thus, taking the log of the likelihood function yields

$$\log L(\pi|y) = \sum_{i=1}^{n} (y_i \log(\pi_i) + (1-y_i) \log(1-\pi_i)).$$

• Using our parameterization of $\pi_i = g(X_i\beta) = \frac{exp(X_i\beta)}{1+exp(X_i\beta)}$ to include the systematic component of the model, the corresponding log-likelihood function becomes

$$\log L(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X}) = \sum_{i=1}^{n} \left(y_i \cdot \log(\frac{\exp(X_i \boldsymbol{\beta})}{1 + \exp(X_i \boldsymbol{\beta})}) + (1 - y_i) \cdot \log(1 - \frac{\exp(X_i \boldsymbol{\beta})}{1 + \exp(X_i \boldsymbol{\beta})}) \right)$$

• The likelihood is maximized numerically by "hill climbing" algorithms.

• The probit model has the same stochastic component as the Logit model, hence the log-likelihood function is

$$log L(\pi|y) = \sum_{i=1}^{n} (y_i log(\pi_i) + (1 - y_i) log(1 - \pi_i)).$$

• Using our parameterization of $\pi_i = \Phi(X_i \beta)$ to include the systematic component of the model, the corresponding *log-likelihood function* becomes

$$\log L(\beta|y,X) = \sum_{i=1}^{n} (y_i \log(\Phi(X_i \beta)) + (1 - y_i) \log(1 - \Phi(X_i \beta)))$$

Interpretation

Interpreting the Logit Model

- Only the OLS model has nice linear marginal effects.
- Since OLS fits a straight line to the data, the slope of this line is the same for each value of any *x_i*.
- For the OLS model with $\pi_i = X_i \beta$, it holds that

$$\frac{\partial \hat{\pi}_i}{\partial x_{ij}} = \hat{\beta}$$

- For all other non-linear models this interpretation is however not valid.
- Assume that we have a logit model for which

$$P(y_i = 1) = \hat{\pi}_i = \frac{exp(X_i\beta)}{1 + exp(X_i\beta)}$$

 $\cdot\,$ Clearly, the marginal effect is no longer linear, but is given as

$$\frac{\partial \hat{\pi}_i}{\partial x_{ij}} = \hat{\beta}_j \hat{\pi}_i (1 - \hat{\pi}_i)$$

• In the logit model it is true that

$$\log \left(\frac{P(y_i = 1 \mid x_i)}{P(y_i = 0 \mid x_i)}\right) = \log \left(\frac{\hat{\pi}_i}{1 - \hat{\pi}_i}\right) = X_i \beta.$$

- Hence, an estimated coefficient $\hat{\beta}_2 = 2$ in a logit model can be interpreted such that, for a one unit change in x_2 , the log ratio of the probability to observe a "1" relative to observing a "0" doubles.
- What does this tell us?
- Let us rather calculate predicted probabilities or other meaningful quantities of interest.

- Instead of directly interpreting coefficients, we usually want to calculate quantities of interest and the uncertainty around them.
- Predicted probabilities (aka expected values) describe the probability of observing an outcome (\in [0,1]).
- Predicted values in contrast are on the scale of the dependent variable, i.e., they are either 0 or 1.
- As before, a first-difference is the difference of the expected values (predicted probabilities) of two scenarios.
- Using our simulation techniques we can estimate confidence intervals for predicted probabilities (expected values), first-differences, predicted values and the like.

 \cdot Once more, predicted probabilities for the logit model are given as

$$\hat{\pi}_i = P(y_i = 1) = \frac{exp(X_i\beta)}{1 + exp(X_i\beta)}$$

• For the probit model, we get predicted probabilities as:

$$\hat{\pi}_i = P(y_i = 1) = \Phi(X_i \beta)$$

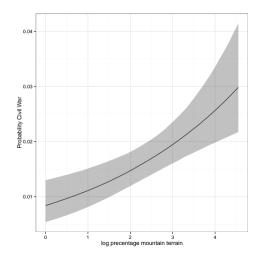
- Suppose you are interested in the following research question: Why have some countries had civil wars while others have not?
- To address this questions you could compile a large dataset that contains information if in a certain country-year a civil war took place.
- These so called onset of civil war could be modeled using logit or probit models.
- Take a look at the regression table from Fearon and Latin's 2003 APSR article: Ethnicity, Insurgency, and Civil War. How can you interpret the coefficients?

			Model		
	(1) Civil War	(2) "Ethnic" War	(3) Civil War	(4) Civil War (Plus Empires)	(5) Civil Waı (COW)
Dele s we s	-0.954**	-0.849*	-0.916**	-0.688**	-0.551
Prior war	(0.314)	(0.388)	(0.312)	(0.264)	-0.551 (0.374)
Per capita income ^{a.b}	-0.344***	-0.379***	-0.318***	-0.305***	-0.309**
	(0.072)		(0.071)	(0.063)	(0.079)
1	0.263***	(0.100) 0.389***	0.272***	0.267***	
log(population) ^{a.b}					0.223**
	(0.073)	(0.110)	(0.074)	(0.069)	(0.079)
log(% mountainous)	0.219**	0.120	0.199*	0.192*	0.418**
	(0.085)	(0.106)	(0.085)	(0.082)	(0.103)
Noncontiguous state	0.443	0.481	0.426	0.798**	-0.171
	(0.274)	(0.398)	(0.272)	(0.241)	(0.328)
Oil exporter	0.858**	0.809*	0.751**	0.548*	1.269**
	(0.279)	(0.352)	(0.278)	(0.262)	(0.297)
New state	1.709***	1.777***	1.658***	1.523***	1.147**
	(0.339)	(0.415)	(0.342)	(0.332)	(0.413)
Instability ^a	0.618**	0.385	0.513*	0.548*	0.584*
	(0.235)	(0.316)	(0.242)	(0.225)	(0.268)
Democracy ^{a.c}	0.021	0.013			
	(0.017)	(0.022)			
Ethnic fractionalization	0.166	0.146	0.164	0.490	-0.119
	(0.373)	(0.584)	(0.368)	(0.345)	(0.396)
Religious fractionalization	0.285	1.533*	0.326	1	1.176
	(0.509)	(0.724)	(0.506)		(0.563)
Anocracy ^a	(,	()	0.521*		0.597*
			(0.237)		(0.261)
Democracy ^{a,d}			0.127		0.219
			(0.304)		(0.354)
Constant	-6.731***	-8.450***	-7.019***	-6.801***	-7.503**
	(0.736)	(1.092)	(0.751)	(0.681)	(0.854)
N	6327	5186	6327	6360	5378
Note: The dependent variable is					

^d Dichotomous.

The effect of mountain terrain of probability civil war

• Better to use simulated probabilities.



Hypothesis Testing in Non-Linear Models: Wald Test

 $\cdot\,$ Assume, we want to test

$$H_0: \ \beta^* = \tilde{\beta} \text{ against } H_1: \beta^* \neq \tilde{\beta}.$$

- The Wald test is a generalization of the standard t-test that we know from linear models.
- $\cdot\,$ The Wald test statistics is calculated as

$$\mathcal{W}^2 = rac{(\hateta - eta^*)^2}{Var(\hateta)}, ext{ with } \mathcal{W} \sim \chi^2_{df=1}.$$

+ For significance tests against $\beta^* = 0$, the Wald statistic becomes

$$\mathcal{W} = rac{\hat{eta}}{\mathsf{SE}(\hat{eta})}, ext{ with } \mathcal{W} \sim \mathcal{N}(\mu = 0, \sigma = 1),$$

which is now distributed standard normal.

• In the "OLS world" the Wald test and the t-test are conceptually equivalent.

Hypothesis Testing in Non-Linear Models: LR Test

- The likelihood ratio test allows to test two *nested* models against each other, which have some common covariates (but one model is a special case of the other model).
- The likelihood ratio test statistic is constructed as

$$LR = -2 \log(\frac{L(\beta)^R}{L(\beta)^U}) = -2 (\log L(\beta)^R - \log L(\beta)^U)$$
, with $LR \sim \chi^2_{df=u-r}$,

where $\log L(\beta)^R$ denotes the log likelihood of the restricted model (the special case), $\log L(\beta)^U$ denotes the log-likelihood of the unrestricted model.

- The test statistic, *LR*, is distributed χ^2 with the difference in model parameters between the unrestricted and the restricted model, i.e., the number of restrictions u r, as degrees of freedom. H_0 is no difference between models.
- In the "OLS world", the likelihood ratio test and the F-test are conceptually equivalent.

Assessing Model Fit

Classification Table for Logit and Probit Models

- Simply running a model without testing for model fit is dangerous.
- An easy test is to classify predicted probabilities as either "0" or "1" depending on some cut-point c. Usually, the cut-point is chosen to be .5.
- Given this, we can tabulate predicted and observed observations in a 2x2 classification table (aka confusion matrix).

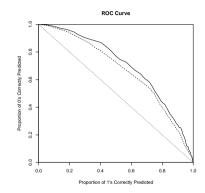
	Predicted (\hat{y}_i)	
Observed (y_i)	0	1
0	n_{00}	n ₀₁
1	n ₁₀	n ₁₁

• From this, we can construct a measure for the percentage of correctly predicted cases (PCP):

$$PCP = \frac{n_{00} + n_{11}}{n_{00} + n_{01} + n_{10} + n_{11}}$$

• If, say, the DV is distributed 70 : 30, then just fixing the prediction to one would predict 70% of the cases correctly. Thus, your model should do better than that.

ROC Curves



- Plot percentage of correctly predicted "1s" and "0s" against each other.
- The further the curve is shifted to the northeast corner, the better the model fit.
- This method is insensitive to the exact choice of the cutoff.
- The area under the curve is often used as a measure of fit.