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The Course

Roadmap
• Understand and model stochastic processes
• Understand statistical inference
• Implement it mathematically and learn how to estimate it

• OLS
• Maximum Likelihood

• Implement it using software
• R
• Basic programming skills
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Overview: Week 11

Modeling Dichotomous Dependent Variables

Motivation

Limited Dependent Variable Models

The Generalized Linear Model Approach

Estimation

Interpretation

Example: Determinants of Civil War

Assessing Model Fit
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Modeling Dichotomous
Dependent Variables



Motivating Binary Dependent Variable Models

• Often our dependent variable is not continuous but binary.
• There are many examples in the social sciences:

• A voter’s choice to go to the polls.
• A politician’s choice to vote “yes” or “no” in legislation (roll call data).
• A government’s decision to implement an EU directive or not.
• A student’s response in an exam can be correct or incorrect.

• In all these cases we have observations on a binary variable, where yi = {0, 1} with
i = 1, ...,n.

• The basic problem is: How do we estimate regression models when our dependent
variable is a dummy?
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Notation

Recall that we can write a linear regression model as

Yi ∼ N(yi|µi, σ2) stochastic

µi = Xiβ = β0 + β1x1 + β2x2+ … systematic

We will generalize that and write any statistical model as

Yi ∼ f(yi|θi, α) stochastic

θi = g(Xi, β) systematic
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Modeling Binary Dependent Variables

• Statistical modeling always operates through modeling stochastic processes.
• Hence, we need a probability model that generates “0” and “1” as outcomes.
• We already know the Bernoulli distribution as a discrete distribution.
• This distribution distinguishes between successes (coded as 1) and failures (coded
as 0), where the probability to get a success is given as π and the probability for
failure is 1− π.

• Since the Bernoulli distribution takes on only two values as does our dependent
variable, we can model each single observation, yi, as an outcome from a Bernoulli
experiment. Hence, our stochastic component (with θ = π) is

Yi ∼ Bernoulli(πi).

• With this, we get:

πi = P(yi = 1) = E(yi) with density f(yi | πi) = πyii (1− πi)
1−yi

• The density function gives back the probability to either get yi = 1 or yi = 0 for a
given success probability πi. 6



Modeling Binary Dependent Variables

• While we observe a dependent variable, yi, with i = 1, ...,n, our goal is to model the
(unobservable) predicted probability πi(∈ [0, 1]), the expectation of observing y = 1
across repeated Bernoulli trials using a function g of covariates, X = {x1, ..., xk} and
respective parameters, i.e. the systematic component.

• Thus, the statistical model looks as follows
Yi ∼ Bernoulli(πi) stochastic component
πi = g(Xi, βi) systematic component

• But why not simply use OLS?
• OLS does not guarantee that predicted probabilities fall into the unit interval.
• OLS necessarily induces heteroskedasticity since yi only takes on two values.
• OLS assumes unrealistic functional form for many applications, i.e., a unit change in xk
results in a constant change in β̂k in the probability of an event holding all other
variables constant.

• Hence, we need a different type of model.
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Model Predictions from OLS and Logit Model
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Generalized Linear Model (GLM) Formulation

• To avoid out-of-bounds predictions, i.e., ηi /∈ [0, 1], we need to force the linear
predictor

ηi = β0 + β1xi1 + ...+ βkxik = Xiβ
to lie inside the unit interval.

• We could do this by restricting the values of β0, ..., βk . Yet, this results in overly
complex models.

• Instead, we choose a function, g, which maps the linear predictor, ηi, into the unit
interval.

• We can write this as
πi = g(ηi) = g(Xiβ).

• The appealing feature is that this response function, g, “automatically” ensures that
the linear predictions ηi lie inside [0, 1].

• The CDF of the logistic distribution function and the normal distribution function are
most often used as response functions.
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Logit Model

• The response function g(η) is related to η via the inverse function h = g−1, called the
link function:

ηi = h(πi)
• If we choose the CDF of the logistic distribution function as a response function, we
get

πi = g(ηi) =
exp(ηi)

1+ exp(ηi)
=

1
1+ exp(−ηi)

• The trick now is that we can use our systematic component Xiβ to reparameterize ηi,
which allows us to write the success probability πi as a function of our covariates
and coefficients.

• With this, we get as predicted probabilities:

πi = P(yi = 1) = exp(Xiβ)
1+ exp(Xiβ)

• This model is referred to as logit model. 10



Probit Model

• If we do not choose a logistic response function, but use the CDF of the standard
normal distribution function (µ = 0, σ = 1), we get

πi = Φ(ηi) = Φ(Xiβ)

• Again, we can derive predicted probabilities which are given as

πi = P(yi = 1) =Φ(Xiβ)

• This model is referred to as probit model.
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Logistic and Standard Normal Distribution

• The logistic distribution has fatter tails.
• Logit and probit coefficients differ by a factor of about 1.81, but produce almost
identical results.
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Estimation



Likelihood Function for a Binary Dependent Variable

• Consider a binary variable yi ∼ Bernoulli(πi) with

πi = P(yi = 1) = E(yi).

• The density for one realization is given as

f(yi | πi) = πyii (1− πi)
1−yi .

• Since all observations yi are independent realizations the likelihood to observe the
data that we did observe is given by the the following expression:

L(π) =
n∏
i=1

f(yi | πi) =
n∏
i=1

πyii (1− πi)
1−yi

with
πi = E(yi | xi) = g(Xiβ).

• When estimating such a model we need to maximize the likelihood L, or for
convenience rather log L to find those parameter vectors (π̂ or, β̂), that most likely
generated the data. 13



Log-Likelihood of the Logit Model

• Thus, taking the log of the likelihood function yields

log L(π|y) =
n∑
i=1

(yilog(πi) + (1− yi)log(1− πi)) .

• Using our parameterization of πi = g(Xiβ) = exp(Xiβ)
1+exp(Xiβ) to include the systematic

component of the model, the corresponding log-likelihood function becomes

log L(β|y, X) =
n∑
i=1

(
yi · log(

exp(Xiβ)
1+ exp(Xiβ)

) + (1− yi) · log(1−
exp(Xiβ)

1+ exp(Xiβ)
)
)

• The likelihood is maximized numerically by “hill climbing” algorithms.
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Log-Likelihood of the Probit Model

• The probit model has the same stochastic component as the Logit model, hence the
log-likelihood function is

log L(π|y) =
n∑
i=1

(yilog(πi) + (1− yi)log(1− πi)) .

• Using our parameterization of πi = Φ(Xiβ) to include the systematic component of
the model, the corresponding log-likelihood function becomes

log L(β|y, X) =
n∑
i=1

(yilog(Φ(Xiβ)) + (1− yi)log(1− Φ(Xiβ))) .
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Interpretation



Interpreting the Logit Model

• Only the OLS model has nice linear marginal effects.
• Since OLS fits a straight line to the data, the slope of this line is the same for each
value of any xi.

• For the OLS model with πi = Xiβ, it holds that
∂π̂i
∂xij

= β̂j

• For all other non-linear models this interpretation is however not valid.
• Assume that we have a logit model for which

P(yi = 1) = π̂i =
exp(Xiβ)

1+ exp(Xiβ)
• Clearly, the marginal effect is no longer linear, but is given as

∂π̂i
∂xij

= β̂jπ̂i(1− π̂i)
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The Log Odds or Logits

• In the logit model it is true that

log
(
P(yi = 1 | xi)
P(yi = 0 | xi)

)
= log

(
π̂i

1− π̂i

)
= Xiβ.

• Hence, an estimated coefficient β̂2 = 2 in a logit model can be interpreted such that,
for a one unit change in x2, the log ratio of the probability to observe a “1” relative to
observing a “0” doubles.

• What does this tell us?
• Let us rather calculate predicted probabilities or other meaningful quantities of
interest.
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Quantities of Interest

• Instead of directly interpreting coefficients, we usually want to calculate quantities
of interest and the uncertainty around them.

• Predicted probabilities (aka expected values) describe the probability of observing
an outcome (∈ [0,1]).

• Predicted values in contrast are on the scale of the dependent variable, i.e., they are
either 0 or 1.

• As before, a first-difference is the difference of the expected values (predicted
probabilities) of two scenarios.

• Using our simulation techniques we can estimate confidence intervals for predicted
probabilities (expected values), first-differences, predicted values and the like.
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Quantities of Interest: Predicted Probabilities

• Once more, predicted probabilities for the logit model are given as

π̂i = P(yi = 1) = exp(Xiβ)
1+ exp(Xiβ)

• For the probit model, we get predicted probabilities as:

π̂i = P(yi = 1) =Φ(Xiβ)
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Example: Determinants of Civil War

• Suppose you are interested in the following research question: Why have some
countries had civil wars while others have not?

• To address this questions you could compile a large dataset that contains
information if in a certain country-year a civil war took place.

• These so called onset of civil war could be modeled using logit or probit models.
• Take a look at the regression table from Fearon and Latin’s 2003 APSR article:
Ethnicity, Insurgency, and Civil War. How can you interpret the coefficients?
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The effect of mountain terrain of probability civil war

• Better to use simulated probabilities.
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Hypothesis Testing in Non-Linear Models: Wald Test

• Assume, we want to test

H0 : β∗ = β̃ against H1 : β∗ ̸= β̃.

• The Wald test is a generalization of the standard t-test that we know from linear
models.

• The Wald test statistics is calculated as

W2 =
(β̂ − β∗)2

Var(β̂)
, withW ∼ χ2df=1.

• For significance tests against β∗ = 0, the Wald statistic becomes

W =
β̂

SE(β̂)
, withW ∼ N (µ = 0, σ = 1),

which is now distributed standard normal.
• In the “OLS world” the Wald test and the t-test are conceptually equivalent.
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Hypothesis Testing in Non-Linear Models: LR Test

• The likelihood ratio test allows to test two nested models against each other, which
have some common covariates (but one model is a special case of the other model).

• The likelihood ratio test statistic is constructed as

LR = −2 log( L(β)
R

L(β)U ) = −2
(
log L(β)R − log L(β)U

)
, with LR ∼ χ2df=u−r,

where log L(β)R denotes the log likelihood of the restricted model (the special case),
log L(β)U denotes the log-likelihood of the unrestricted model.

• The test statistic, LR, is distributed χ2 with the difference in model parameters
between the unrestricted and the restricted model, i.e., the number of restrictions
u− r, as degrees of freedom. H0 is no difference between models.

• In the “OLS world”, the likelihood ratio test and the F-test are conceptually
equivalent.
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Assessing Model Fit



Classification Table for Logit and Probit Models

• Simply running a model without testing for model fit is dangerous.
• An easy test is to classify predicted probabilities as either “0” or “1” depending on
some cut-point c. Usually, the cut-point is chosen to be .5.

• Given this, we can tabulate predicted and observed observations in a 2x2
classification table (aka confusion matrix).

Predicted (ŷi)
Observed (yi) 0 1

0 n00 n01
1 n10 n11

• From this, we can construct a measure for the percentage of correctly predicted
cases (PCP):

PCP =
n00 + n11

n00 + n01 + n10 + n11
• If, say, the DV is distributed 70 : 30, then just fixing the prediction to one would
predict 70% of the cases correctly. Thus, your model should do better than that.
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ROC Curves
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• Plot percentage of correctly predicted “1s” and “0s”against each other.
• The further the curve is shifted to the northeast corner, the better the model fit.
• This method is insensitive to the exact choice of the cutoff.
• The area under the curve is often used as a measure of fit. 26
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