Sl

WL UNIVERSITY

&¥/OF MANNHEIM
hool of Social Sciences

Quantitative Methods in Political Science:
Logit and Probit Models

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova | David M. Grundmanns
Week 11 - 17 November 2021



Roadmap
- Understand and model stochastic processes
- Understand statistical inference

- Implement it mathematically and learn how to estimate it
- OLS
- Maximum Likelihood
- Implement it using software
- R
- Basic programming skills
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Modeling Dichotomous
Dependent Variables



Motivating Binary Dependent Variable Models

- Often our dependent variable is not continuous but binary.
- There are many examples in the social sciences:
- Avoter’s choice to go to the polls.
- A politician’s choice to vote “yes” or “no” in legislation (roll call data).
- A government’s decision to implement an EU directive or not.
- A student’s response in an exam can be correct or incorrect.
- In all these cases we have observations on a binary variable, where y; = {0, 1} with
I=1..n.
- The basic problem is: How do we estimate regression models when our dependent
variable is a dummy?



Recall that we can write a linear regression model as
i~ N(yilui,0?) stochastic

wi = X8 =[P+ PiX1+ FoXo+ .. systematic

We will generalize that and write any statistical model as
Yi ~  flyilbi,o) stochastic

0 = g(X,n) systematic



Modeling Binary Dependent Variables

- Statistical modeling always operates through modeling stochastic processes.

- Hence, we need a probability model that generates “0” and “1” as outcomes.

- We already know the Bernoulli distribution as a discrete distribution.

- This distribution distinguishes between successes (coded as 1) and failures (coded
as 0), where the probability to get a success is given as 7 and the probability for
failure is 1 — .

- Since the Bernoulli distribution takes on only two values as does our dependent
variable, we can model each single observation, y;, as an outcome from a Bernoulli
experiment. Hence, our stochastic component (with 8 = ) is

Y; ~ Bernoulli(m;).
- With this, we get:
m = P(y; = 1) = E(y;) with density f(y; | m) = @/"(1 — m)' ™

- The density function gives back the probability to either gety; =1ory; =0 fora
given success probability ;. 6



Modeling Binary Dependent Variables

- While we observe a dependent variable, y;, with i =1, ..., n, our goal is to model the
(unobservable) predicted probability mi(€ [0,1]), the expectation of observing y = 1
across repeated Bernoulli trials using a function g of covariates, X = {x, ..., Xx} and
respective parameters, i.e. the systematic component.

- Thus, the statistical model looks as follows

Y; ~ Bernoulli(wj) stochastic component
= g(Xi, ) systematic component

- But why not simply use OLS?
- OLS does not guarantee that predicted probabilities fall into the unit interval.

- OLS necessarily induces heteroskedasticity since y; only takes on two values.

- OLS assumes unrealistic functional form for many applications, i.e., a unit change in x
results in a constant change in 3, in the probability of an event holding all other
variables constant.

- Hence, we need a different type of model.



Model Predictions from OLS and Logit Model
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Generalized Linear Model (GLM) Formulation

- To avoid out-of-bounds predictions, i.e., n; ¢ [0, 1], we need to force the linear

predictor
ni = Po + BiXi + - + BrXik = XiB

to lie inside the unit interval.

- We could do this by restricting the values of Sy, ..., 8 . Yet, this results in overly
complex models.

- Instead, we choose a function, g, which maps the linear predictor, n;, into the unit
interval.

- We can write this as

m = g(n;) = 9(XiB).

- The appealing feature is that this response function, g, “automatically” ensures that
the linear predictions #; lie inside [0, 1].

- The CDF of the logistic distribution function and the normal distribution function are
most often used as response functions.



- The response function g(n) is related to n via the inverse function h = g=', called the

link function:
ni = h(m;)
- If we choose the CDF of the logistic distribution function as a response function, we
get
exp(ni) 1

T = 9(77«) = '] + eXp(T]i) B 1 + QXP(—U/‘)

- The trick now is that we can use our systematic component X;3 to reparameterize n;,
which allows us to write the success probability 7; as a function of our covariates
and coefficients.

- With this, we get as predicted probabilities:

exp(X;
1= p(XiB)

PV S e ,8)

- This model is referred to as logit model. 10



- If we do not choose a logistic response function, but use the CDF of the standard
normal distribution function (& = 0, o = 1), we get

mi = ®(n) = ®(X;B)
- Again, we can derive predicted probabilities which are given as

7 = P(y; = 1) =®(XiB)

- This model is referred to as probit model.

1



Logistic and Standard Normal Distribution

- The logistic distribution has fatter tails.
- Logit and probit coefficients differ by a factor of about 1.81, but produce almost
identical results.
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Estimation




Likelihood Function for a Binary Dependent Variable

- Consider a binary variable y; ~ Bernoulli(m;) with
mi = P(yi = 1) = E(;).
- The density for one realization is given as
fyi | m) = 7' (1= m)'" =

- Since all observations y; are independent realizations the likelihood to observe the
data that we did observe is given by the the following expression:

L) =il m) =] =1 = =)
P =1

with
m = E(vi | i) = 9(XiB).
- When estimating such a model we need to maximize the likelihood L, or for

convenience rather log L to find those parameter vectors (# or, 3), that most likely
generated the data. 13



Log-Likelihood of the Logit Model

- Thus, taking the log of the likelihood function yields

n
log L(wly) =) (vilog(m) + (1—y)log(1 — ).
i=1
- Using our parameterization of w; = g(X.3) = 13%(”&) to include the systematic
component of the model, the corresponding log-likelihood function becomes

log L(Bly, X) = ; (vi- log(%) +(1=yi)-log(1— %))

- The likelihood is maximized numerically by “hill climbing” algorithms.

14



Log-Likelihood of the Probit Model

- The probit model has the same stochastic component as the Logit model, hence the
log-likelihood function is

n

log L(mly) = (vilog(m) + (1= y;)log(1 — m;)) .

i=1

- Using our parameterization of ; = ®(X;3) to include the systematic component of
the model, the corresponding log-likelihood function becomes

n

log L(Bly, X) =Y _ (ilog(®(XiB)) + (1 — y)log(1 — &(X;B))) .

i=1



Interpretation




Interpreting the Logit Model

- Only the OLS model has nice linear marginal effects.
- Since OLS fits a straight line to the data, the slope of this line is the same for each
value of any x;.
- For the OLS model with ; = X;3, it holds that
ORj 4
o L
- For all other non-linear models this interpretation is however not valid.
- Assume that we have a logit model for which

) EXPXiB)
- Clearly, the marginal effect is no longer linear, but is given as
Of;

o, Pii(1—#i)



The Log Odds or Logits

- In the logit model it is true that

P(yi =11 x 7
09 (P(())//«I =0 || Xli))> =109 (1 —IfTi) =N

- Hence, an estimated coefficient Bz = 21in a logit model can be interpreted such that,
for a one unit change in x,, the log ratio of the probability to observe a “1” relative to
observing a “0” doubles.

- What does this tell us?

- Let us rather calculate predicted probabilities or other meaningful quantities of
interest.




Quantities of Interest

- Instead of directly interpreting coefficients, we usually want to calculate quantities
of interest and the uncertainty around them.

- Predicted probabilities (aka expected values) describe the probability of observing
an outcome (e [071]).

- Predicted values in contrast are on the scale of the dependent variable, i.e., they are
either 0 or 1.

- As before, a first-difference is the difference of the expected values (predicted
probabilities) of two scenarios.

- Using our simulation techniques we can estimate confidence intervals for predicted
probabilities (expected values), first-differences, predicted values and the like.



Quantities of Interest: Predicted Probabilities

- Once more, predicted probabilities for the logit model are given as

et
7 =Py =1) 14 exp(XiB)

- For the probit model, we get predicted probabilities as:

7= P(y; = 1) =0(X;8)

19



Example: Determinants of Civil War

- Suppose you are interested in the following research question: Why have some
countries had civil wars while others have not?

- To address this questions you could compile a large dataset that contains
information if in a certain country-year a civil war took place.

- These so called onset of civil war could be modeled using logit or probit models.

- Take a look at the regression table from Fearon and Latin’'s 2003 APSR article:
Ethnicity, Insurgency, and Civil War. How can you interpret the coefficients?

20



TABLE 1. Logit Analyses of Determinants of Civil War Onset, 1945-99

Model
(4) (5)
(1) @) (3) Civil War Civil War
Civil War “Ethnic” War Civil War (Plus Empires) (cow)
Prior war —0.954" —0.849° —0.916°* —0.688™ —0.551
(0.314) (0.388) (0.312) (0.264) (0.374)
Per capita income®® —0.344* —0.379" —0.318" —0.305"* —0.309*
(0.072) (0.100) (0.071) (0.063) (0.079)
log (population)®-* 0.263* 0.389°* 0.272+ 0.267+* 0223
(0.073) (0.110) (0.074) (0.069) (0.079)
log(% mountainous) 0.219* 0.120 0.199* 0.192% 0.418"
(0.085) (0.108) (0.085) (0.082) (0.103)
Noncontiguous state 0.443 0.481 0.426 0.798* —0.171
(0.274) (0.398) (0.272) (0241) (0.328)
Qil exporter 0.858" 0.809° 0.751° 0.548" 1269
(0.279) (0.352) (0.278) (0.262) (0.297)
New state 1.709° 1.777 1.658° 1.523 1.147
(0.339) (0.415) (0.342) (0.332) (0.413)
Instability® 0.618" 0.385 0.513° 0.548* 0.584"
(0.235) (0.316) (0.242) (0.225) (0.268)
Democracy®*© 0.021 0.013
0.017) (0.022)
Ethnic fractionalization 0.166 0.146 0.164 0.490 -0.119
(0.373) (0.584) (0.368) (0.345) (0.396)
Religious fractionalization 0.285 1.533" 0.326 1.176°
(0.509) (0.724) (0.506) (0.563)
Anocracy? 0.521* 0.597*
(0.237) (0.261)
Democracy® 9 0.127 0.219
(0.304) (0.354)
Constant —6.731** —8.450°* —7.019" —6.801* —7.503**
(0.736) (1.092) (0.751) (0.681) (0.854)
N 6327 5186 6327 6360 5378

Note: The dependent variable is coded "1” for couniry years in which a cw war began and *0" in all others. Standard errors are in
parentheses. Estimations performed using Stata 7.0.°p < .05; *p < .01; **"p < .001.

°Folity IV; varies from =10 1o 10.
dDichotomous.




The effect of mountain terrain of probability civil war

- Better to use simulated probabilities.

Probability Civil War

2 3
log precentage mountain terrain
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Hypothesis Testing in Non-Linear Models: Wald Test

- Assume, we want to test
Ho : B* = f against Hy : 8* # 5.
- The Wald test is a generalization of the standard t-test that we know from linear
models.
- The Wald test statistics is calculated as
A px\2
W? = M, With W ~ x§r—y.
var(p)
- For significance tests against 8* = 0, the Wald statistic becomes
W= BA , With W~ N (= 0,0 =1),
SE(P)
which is now distributed standard normal.
- In the “OLS world” the Wald test and the t-test are conceptually equivalent.

23



Hypothesis Testing in Non-Linear Models: LR Test

- The likelihood ratio test allows to test two nested models against each other, which
have some common covariates (but one model is a special case of the other model).

- The likelihood ratio test statistic is constructed as

(R = —210g(-y — 5 R Y), with ;
= g(L(ﬁ)U) =2 ( 0g L(IB) 0g L(/@) )7 with LR ~ Xdf=u—rs

where log L(B)F denotes the log likelihood of the restricted model (the special case),
log L(B)Y denotes the log-likelihood of the unrestricted model.

- The test statistic, LR, is distributed x? with the difference in model parameters
between the unrestricted and the restricted model, i.e., the number of restrictions
u —r, as degrees of freedom. Hy is no difference between models.

- In the “OLS world”, the likelihood ratio test and the F-test are conceptually
equivalent.

24



Assessing Model Fit




Classification Table for Logit and Probit Models

- Simply running a model without testing for model fit is dangerous.

- An easy test is to classify predicted probabilities as either “0” or “1” depending on
some cut-point c. Usually, the cut-point is chosen to be 5.

- Given this, we can tabulate predicted and observed observations in a 2x2
classification table (aka confusion matrix).

Predicted (:)

Observed (y;)) 0 1
0 Noo No1
1 Mo N1

- From this, we can construct a measure for the percentage of correctly predicted

cases (PCP): I
00 1

Noo + No1 + Nio + N1y
- If, say, the DV is distributed 70 : 30, then just fixing the prediction to one would
predict 70% of the cases correctly. Thus, your model should do better than that.

PCP =

25



ROC Curves

ROC Curve

Proportion of 0's Correctly Predicted
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- Plot percentage of correctly predicted “1s” and “0s”against each other.

- The further the curve is shifted to the northeast corner, the better the model fit.

- This method is insensitive to the exact choice of the cutoff.

- The area under the curve is often used as a measure of fit. %
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