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Roadmap
- Understand and model stochastic processes
- Understand statistical inference

- Implement it mathematically and learn how to estimate it
- OLS
- Maximum Likelihood
- Implement it using software
- R
- Basic programming skills



Overview: Week 12

Count Models
Example Today: One-Sided Violence Against Civilians

Count Models as Generalized Linear Models
Poisson Models

Negative Binomial



Count Models



Count Models

- Oftentimes our dependent variables are counts of discrete events
- number of bills passed in legislature per month
- number of parliamentary questions asked per MP per year
- number of military conflicts per year
- number of Coups d’Etat in black African states
- number of news stories about a politician per day
- number of presidential vetoes per presidential term

- No (theoretical) upper limit on the number of observed events



Example Today: One-Sided
Violence Against Civilians




Example Today: One-Sided Violence Against Civilians

- Kristine Eck & Lisa Hultan present a data-set on direct and deliberate killings of
civilians (one sided violence) in interstate armed conflicts, during 1989-2004.

- Here, we are especially interested in the question if one-sided violence committed
by governments or rebel groups
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How to model counts using Poisson ?

- Counts take on discrete values (0,1,...) and are bounded between
0 and +oo

- We typically cannot observe the underlying data generating process (how events
occur)

- We only observe the number of events at the end of the “observation period”.

- For example, we can count or estimate the number of one-sided violence in a year, but
conceiving a list of killed/not-killed is difficult

- Pr(event attime t | all events up to time t — 1) is constant for all ¢, i.e., the probability
of an event occurring at a certain time is constant and independent of all previous
events.



Count Models as Generalized
Linear Models



The structure of Generalized Linear Models

Like in the logit/probit case, we can use the generalized linear model setup
A Generalized Linear Model (GLM) consist three components

- Stochastic Component (1), specifying the conditional distribution of the dependent
variable Y;

- Systematic Component, consisting of a linear function of predictors (2), e.g.,

ni = Po + BiXin + BoXip + - + BrXik (1)

- and (3) a Link Function h(-) which transforms the expectation of the dependent
variable, uj = E(Y;), to the linear predictor

h(ui) = ni = Bo + BiXin + BoXio + - .. + BrXik (2)



Generalized Linear Models

- Models we discussed so far:

Model Distribution  Link h(pj) =n; RangeY;
Linear Gaussian Identity (i) (=00, 00)
Logit  Bernoulli Logit log - [0,7]
Probit  Bernoulli Probit S~ (1) [0,1]




Poisson Model

- Y; is drawn from a Poisson distribution with (only a single) parameter J; :

Y ~ Poisson(\;)

- The Poisson PDF for a single observation:

N fora>0andy; =0,1,...
fPoisson(yip‘) = vi . g o
0 otherwise

- The probability density of all the data (i.e, N observations, given that Y; and Y; are
independent conditional on X for all i # j and identically distributed) is the product

of all N individual observations:
N

Privin) =]

=1

e—AAyi
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Poisson with A =[5,
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Poisson Model

- It can be shown that for a Poisson distribution ); is the mean and variance
parameter, i.e., E(Y;) = Var(Y;) = A

- We will use an exponential response function, because A\; > 0

E(Y’) — /\I — e/BO'i'HWXH+62X12+---+ﬂhxvﬁ — eXrﬁ

- Remember we need to assume that the probability of an event occurring at a certain
time is constant and independent of all previous events.



Poisson Model

- Deriving the likelihood function:
Lo )

Lo =[] =+

i=1

n

In LOAY) =D (iln(N) = Ai—In(y1))
In L(A]Y) = Zn:(y/‘l”()\f) =)

i=1

In L(B]Y) Z(y/Xﬁ — e

- As before, we maximize the log-likelihood to get 3.



Poisson Model

- Quantities of interest:
- Expected values (counts) given specific values of X

E(VilX) = A =€’

- First-differences (entertain interesting counterfactual)
- Predicted values (counts)

- As usual, to simulate from a Poisson model we do the following:
1. Draw f's repeatedly from the multivariate normal N(3, ¥(3)), i.e. the simulated sampling
distribution of the ’s to account for estimation uncertainty
2. Define scenario of interest by setting the IV's to particular values (Xc)
3. Compute Ac = ¢# and take the mean over all X.'s to get the expected counts

4. Draw Yc from fpo,-sson(Y|5\c) to account for fundamental uncertainty if you wanna get
predicted counts, given A
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Results for Example:

Poisson Model

Dependent variable

Count of One Sided Violence

(1) (2 (3)

Government Rebel
Civil war 0.626%** 0.222%** 0.901%***
(0.008) (0.013) (0.011)
Autocracy 0.473%** 0.439%** 0.550***
(0.011) (0.016) (0.016)
Democracy —0.066%** —1.403%** 0.402%**
(0.014) (0.032) (0.017)
Government —0.073%**
(0.008)
One sided Violence t-1 0.001%** 0.0017%** 0.001%**
(0.00000) (0.00001) (0.00001)
Constant 2.878%** 3.572%** 2.306%**
(0.015) (0.022) (0.021)
Observations 1,178 435 743
Log Likelihood —158,122.600 —65,303.790 —89,707.900
Akaike Inf. Crit. 316,257.300 130,617.600 179,425.800

Note:

*p<0.1; **p<0.05 ***p<0.01
Excluding observation Rwanda 1994



Negative Binomial Model

- A limitation of the Poisson distribution is the equality of the conditional mean and
variance of y .

Var(Y|X) = E(Y]X) = A

- Often our data are overdispersed, i.e. the variance is actually larger than the mean.

var(Y|X) > E(Y|X)
- The consequence of overdispersion is that the standard errors are biased towards
zero (i.e, they are too small)
- We could use robust standard errors, but then we only get the mean right (very
limited!)
- Therefore, we model overdispersion, i.e. we parameterize it. This yields the the
so-called negative binomial model.



What happens without an extra dispersion parameter?

Suppose we run a poisson when counts are ...

..underdispersed, Var(Y;|X;) = E(Y;|X;), or overdispersed.

E(Y;|X;) and 95% Cl



Negative Binomial Model

- The basic idea is to adopt a Poisson model for the count Y}, but to suppose that the
expected count A\* is itself an unobservable random variable that is Gamma
distributed with mean X and scale (or overdispersion) parameter 4.

- Then the observed count Y; follows a negative binomial distribution:

ry+0) N
yIr@) (4 0y

fNegBin(yip\ia 0) =

« Mean: E(Y;) =\ = e



Negative Binomial Model

- The negative binomial model includes a parameter that can take care of the
overdispersed data structure:

var(Y;)) = \ + %A,z or
var(Y;) = A +aX?
- The negative binomial model has one more parameter than the Poisson
- If a =0 (or § — o0), the negative binomial model is identical to the Poisson model

- This means we can test whether the negative binomial or the Poisson model is more
appropriate for our data.
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Negative Binomial Model

- Let a = ; represent the inverse of the scale parameter.
- Our null hypothesis Hy : a = 0 ("Poisson model”)

- Our alternative hypothesis Hg : o > 0.

- Compute likelihood-ratio test (LRT) from chi-square distribution with one degree of

freedom.
- In order to obtain corresponding p-value note that right-tailed p-value must be halved
since the negative binomial over-dispersion parameter is restricted to be positive
(one-sided test)
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Results for Example: Negative Binomial Model

Dependent variable:

Count of One Sided Violence

(1) ) (3)
Government Rebel
Civil War 1.042%** 0.903 1.012%*
(0.340) (0.629) (0.406)
Autocracy 0.561 0.822 0347
(0.369) (0.703) (0.431)
Democracy 0.394 —0.322 0.580
(0.410) (0.817) (0.468)
Government —0.002
(0.296)
One sided Violence t-1 0.009*** 0.008*** 0.010***
(0.001) (0.001) (0.001)
Constant 1.237%* 1.449 1.282%*
(0.526) (0.988) (0.609)
Observations 1,178 435 743
Log Likelihood —2,407.617 —718.369 —1,679.689
@ 0.042*** (0.003) 0.029*** (0.004) 0.053*** (0.004)
Akaike Inf. Crit. 4,827.235 1,446.738 3,369.378
Note: *p<0.1; **p<0.05; ***p<0.01

Excluding observation Rwanda 1994



Use simulated quantity of interest instead
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