

Quantitative Methods in Political Science: Count Models

Thomas Gschwend | Oliver Rittmann | Viktoriia Semenova | David M. Grundmanns Week 12 - 24 November 2021

Roadmap

- Understand and model stochastic processes
- Understand statistical inference
- Implement it mathematically and learn how to estimate it
 - OLS
 - Maximum Likelihood
- Implement it using software
 - ۰R
 - Basic programming skills

Count Models

Example Today: One-Sided Violence Against Civilians

Count Models as Generalized Linear Models

Poisson Models

Negative Binomial

Count Models

- · Oftentimes our dependent variables are counts of discrete events
 - number of bills passed in legislature per month
 - number of parliamentary questions asked per MP per year
 - number of military conflicts per year
 - number of Coups d'Etat in black African states
 - number of news stories about a politician per day
 - number of presidential vetoes per presidential term
- No (theoretical) upper limit on the number of observed events

Example Today: One-Sided Violence Against Civilians

- Kristine Eck & Lisa Hultan present a data-set on direct and deliberate killings of civilians (one sided violence) in interstate armed conflicts, during 1989-2004.
- Here, we are especially interested in the question if one-sided violence committed by governments or rebel groups

How to model counts using Poisson?

- Counts take on discrete values (0,1,...) and are bounded between 0 and $+\infty$
- We typically cannot observe the underlying data generating process (how events occur)
- We only observe the number of events at the end of the "observation period".
 - For example, we can count or estimate the number of one-sided violence in a year, but conceiving a list of killed/not-killed is difficult
- Pr(event at time t | all events up to time t 1) is constant for all t, i.e., the probability of an event occurring at a certain time is constant and independent of all previous events.

Count Models as Generalized Linear Models Like in the logit/probit case, we can use the *generalized linear model* setup

A Generalized Linear Model (GLM) consist three components

- *Stochastic Component* (1), specifying the conditional distribution of the dependent variable Y_i
- Systematic Component, consisting of a linear function of predictors (2), e.g.,

$$\eta_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} \tag{1}$$

• and (3) a *Link Function* $h(\cdot)$ which transforms the expectation of the dependent variable, $\mu_i = E(Y_i)$, to the linear predictor

$$h(\mu_i) = \eta_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik}$$
(2)

• Models we discussed so far:

Model	Distribution	Link	$h(\mu_i) = \eta_i$	Range Y _i
Linear	Gaussian	Identity	$(\mu_i) \ log rac{\mu_i}{1-\mu_i} \ \Phi^{-1}(\mu_i)$	$(-\infty,\infty)$
Logit	Bernoulli	Logit		[0,1]
Probit	Bernoulli	Probit		[0,1]

• Y_i is drawn from a Poisson distribution with (only a single) parameter λ_i :

$Y_i \sim Poisson(\lambda_i)$

• The Poisson PDF for a single observation:

$$f_{Poisson}(y_i|\lambda) = \begin{cases} \frac{e^{-\lambda_i X^{y_i}}}{y_i!} & \text{for } \lambda > 0 \text{ and } y_i = 0, 1, \dots \\ 0 & otherwise \end{cases}$$

• The probability density of all the data (i.e., *N* observations, given that Y_i and Y_j are independent conditional on *X* for all $i \neq j$ and identically distributed) is the product of all *N* individual observations:

$$Pr(Y|\lambda) = \prod_{i=1}^{N} \frac{e^{-\lambda} \lambda^{y_i}}{y_i!}$$

Poisson with $\lambda = [5, 15, 30, 60]$

- It can be shown that for a Poisson distribution λ_i is the mean <u>and</u> variance parameter, i.e., $E(Y_i) = Var(Y_i) = \lambda_i$
- We will use an exponential response function, because $\lambda_i > 0$

$$E(Y_i) = \lambda_i = e^{\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik}} = e^{X_i \beta}$$

• Remember we need to assume that the probability of an event occurring at a certain time is constant and independent of all previous events.

Poisson Model

• Deriving the likelihood function:

$$L(\lambda|Y) = \prod_{i=1}^{n} \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}$$

ln $L(\lambda|Y) = \sum_{i=1}^{n} (y_i ln(\lambda_i) - \lambda_i - ln(y_i!))$
ln $L(\lambda|Y) = \sum_{i=1}^{n} (y_i ln(\lambda_i) - \lambda_i)$
ln $L(\beta|Y) = \sum_{i=1}^{n} (y_i(X_i\beta) - e^{X_i\beta})$

)

• As before, we maximize the log-likelihood to get $\hat{\beta}$.

Poisson Model

- Quantities of interest:
 - Expected values (counts) given specific values of X

 $E(Y_i|X_i) = \lambda_i = e^{X_i\beta}$

- First-differences (entertain interesting counterfactual)
- Predicted values (counts)
- As usual, to simulate from a Poisson model we do the following:
 - 1. Draw $\tilde{\beta}$'s repeatedly from the multivariate normal $N(\hat{\beta}, \hat{V}(\hat{\beta}))$, i.e. the simulated sampling distribution of the β 's to account for *estimation* uncertainty
 - 2. Define scenario of interest by setting the IV's to particular values (X_c)
 - 3. Compute $\tilde{\lambda}_c = e^{\chi_c \tilde{\beta}}$ and take the mean over all $\tilde{\lambda}_c$'s to get the expected counts
 - 4. Draw Y_c from $f_{Poisson}(Y|\tilde{\lambda}_c)$ to account for *fundamental* uncertainty if you wanna get predicted counts, given $\tilde{\lambda}_c$

Results for Example: Poisson Model

	Dependent variable:				
	Count of One Sided Violence				
	(1)	(2)	(3)		
		Government	Rebel		
Civil War	0.626***	0.222***	0.901***		
	(0.008)	(0.013)	(0.011)		
Autocracy	0.473***	0.439***	0.550***		
	(0.011)	(0.016)	(0.016)		
Democracy			0.402***		
,	(0.014)	(0.032)	(0.017)		
Government	-0.073*** (0.008)				
One sided Violence t-1	0.001***	0.001***	0.001***		
	(0.00000)	(0.00001)	(0.00001)		
Constant	2.878***	3.572***	2.306***		
	(0.015)	(0.022)	(0.021)		
Observations	1,178	435	743		
Log Likelihood	-158,122.600	-65,303.790	- 89,707.90		
Akaike Inf. Crit.	316,257.300	130,617.600	179,425.800		

Note:

*p<0.1; **p<0.05; ***p<0.01

Excluding observation Rwanda 1994

Negative Binomial Model

• A limitation of the Poisson distribution is the equality of the conditional mean and variance of *y* .

 $Var(Y|X) = E(Y|X) = \lambda$

• Often our data are overdispersed, i.e. the variance is actually larger than the mean.

Var(Y|X) > E(Y|X)

- The consequence of overdispersion is that the standard errors are biased towards zero (i.e., they are too small)
- We could use robust standard errors, but then we only get the mean right (very limited!)
- Therefore, we model overdispersion, i.e. we parameterize it. This yields the the so-called negative binomial model.

What happens without an extra dispersion parameter?

Suppose we run a poisson when counts are ...

...underdispersed, $Var(Y_i|X_i) = E(Y_i|X_i)$, or overdispersed.

- The basic idea is to adopt a Poisson model for the count Y_i , but to suppose that the expected count λ^* is itself an unobservable random variable that is Gamma distributed with mean λ and scale (or overdispersion) parameter θ .
- Then the observed count Y_i follows a *negative binomial distribution*:

$$f_{NegBin}(y_i|\lambda_i,\theta) = \frac{\Gamma(y_i+\theta)}{y!\Gamma(\theta)} \times \frac{\lambda_i^{y_i}\theta^{\theta}}{(\lambda_i+\theta)^{y_i+\theta}}$$

• Mean: $E(Y_i) = \lambda_i = e^{\chi_i \beta}$

• The negative binomial model includes a parameter that can take care of the overdispersed data structure:

$$Var(Y_i) = \lambda_i + \frac{1}{ heta}\lambda_i^2$$
, or
 $Var(Y_i) = \lambda_i + lpha\lambda_i^2$

- \cdot The negative binomial model has one more parameter than the Poisson
- If α = 0 (or $\theta \rightarrow \infty$), the negative binomial model is identical to the Poisson model
- This means we can test whether the negative binomial or the Poisson model is more appropriate for our data.

- Let $\alpha = \frac{1}{\theta}$ represent the inverse of the scale parameter.
- Our null hypothesis $H_0: \alpha = 0$ ("Poisson model")
- Our alternative hypothesis $H_a: \alpha > 0$.
- Compute likelihood-ratio test (LRT) from chi-square distribution with one degree of freedom.
 - In order to obtain corresponding *p*-value note that right-tailed *p*-value must be halved since the negative binomial over-dispersion parameter is restricted to be positive (one-sided test)

Results for Example: Negative Binomial Model

	Dependent variable:			
Count of One Sided Violence				
(1)	(2)	(3)		
	Government	Rebel		
1.042*** (0.340)	0.903 (0.629)	1.012** (0.406)		
0.561 (0.369)	0.822 (0.703)	0.347 (0.431)		
0.394 (0.410)		0.580 (0.468)		
0.002 (0.296)				
0.009*** (0.001)	0.008*** (0.001)	0.010*** (0.001)		
1.237** (0.526)	1.449 (0.988)	1.282** (0.609)		
1,178 2,407.617 0.042*** (0.003) 4,827.235	435 	743 		
	(1) 1.042*** (0.340) 0.561 (0.369) 0.394 (0.410) -0.002 (0.296) 0.009*** (0.001) 1.237** (0.526) 1.178 -2.407.617 0.422*** (0.003) 4.827.235	Dependent Variable: Count of One Sided Violence (1) (2) Government 6000000000000000000000000000000000000		

Note:

* p<0.1; ** p<0.05; *** p<0.01 Excluding observation Rwanda 1994

Use simulated quantity of interest instead

