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The Course

Roadmap
• Understand and model stochastic processes
• Understand statistical inference
• Implement it mathematically and learn how to estimate it

• OLS
• Maximum Likelihood

• Implement it using software
• R
• Basic programming skills
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Overview: Week 12

Count Models

Example Today: One-Sided Violence Against Civilians

Count Models as Generalized Linear Models

Poisson Models

Negative Binomial
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Count Models



Count Models

• Oftentimes our dependent variables are counts of discrete events
• number of bills passed in legislature per month
• number of parliamentary questions asked per MP per year
• number of military conflicts per year
• number of Coups d’Etat in black African states
• number of news stories about a politician per day
• number of presidential vetoes per presidential term

• No (theoretical) upper limit on the number of observed events
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Example Today: One-Sided
Violence Against Civilians



Example Today: One-Sided Violence Against Civilians

• Kristine Eck & Lisa Hultan present a data-set on direct and deliberate killings of
civilians (one sided violence) in interstate armed conflicts, during 1989-2004.

• Here, we are especially interested in the question if one-sided violence committed
by governments or rebel groups

5



0

2500

5000

7500

10000

1990 1995 2000 2004

A
nn

ua
l O

ne
−

S
id

ed
 F

at
al

iti
e

Actor

Rebels

Government



How to model counts using Poisson ?

• Counts take on discrete values (0, 1, . . .) and are bounded between
0 and +∞

• We typically cannot observe the underlying data generating process (how events
occur)

• We only observe the number of events at the end of the “observation period”.
• For example, we can count or estimate the number of one-sided violence in a year, but
conceiving a list of killed/not-killed is difficult

• Pr(event at time t | all events up to time t− 1) is constant for all t, i.e., the probability
of an event occurring at a certain time is constant and independent of all previous
events.
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Count Models as Generalized
Linear Models



The structure of Generalized Linear Models

Like in the logit/probit case, we can use the generalized linear model setup

A Generalized Linear Model (GLM) consist three components

• Stochastic Component (1), specifying the conditional distribution of the dependent
variable Yi

• Systematic Component, consisting of a linear function of predictors (2), e.g.,

ηi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik (1)

• and (3) a Link Function h(·) which transforms the expectation of the dependent
variable, µi = E(Yi), to the linear predictor

h(µi) = ηi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik (2)
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Generalized Linear Models

• Models we discussed so far:

Model Distribution Link h(µi) = ηi Range Yi

Linear Gaussian Identity (µi) (−∞,∞)

Logit Bernoulli Logit log µi
1−µi

[0, 1]
Probit Bernoulli Probit Φ−1(µi) [0, 1]
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Poisson Model

• Yi is drawn from a Poisson distribution with (only a single) parameter λi :

Yi ∼ Poisson(λi)

• The Poisson PDF for a single observation:

fPoisson(yi|λ) =
{

e−λλyi
yi! for λ > 0 and yi = 0, 1, . . .

0 otherwise

• The probability density of all the data (i.e., N observations, given that Yi and Yj are
independent conditional on X for all i ̸= j and identically distributed) is the product
of all N individual observations:

Pr(Y|λ) =
N∏
i=1

e−λλyi

yi!
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Poisson with λ = [5, 15, 30, 60]
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Poisson Model

• It can be shown that for a Poisson distribution λi is the mean and variance
parameter, i.e., E(Yi) = Var(Yi) = λi

• We will use an exponential response function, because λi > 0

E(Yi) = λi = eβ0+β1Xi1+β2Xi2+...+βkXik = eXiβ

• Remember we need to assume that the probability of an event occurring at a certain
time is constant and independent of all previous events.
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Poisson Model

• Deriving the likelihood function:

L(λ|Y) =
n∏
i=1

e−λiλyii
yi!

ln L(λ|Y) =
n∑
i=1

(yiln(λi)− λi−ln(yi!))

ln L(λ|Y) =
n∑
i=1

(yiln(λi)− λi)

ln L(β|Y) =
n∑
i=1

(yi(Xiβ)− eXiβ)

• As before, we maximize the log-likelihood to get β̂.
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Poisson Model

• Quantities of interest:
• Expected values (counts) given specific values of X

E(Yi|Xi) = λi = eXiβ

• First-differences (entertain interesting counterfactual)
• Predicted values (counts)

• As usual, to simulate from a Poisson model we do the following:
1. Draw β̃’s repeatedly from the multivariate normal N(β̂, V̂(β̂)), i.e. the simulated sampling
distribution of the β’s to account for estimation uncertainty

2. Define scenario of interest by setting the IV’s to particular values (Xc)
3. Compute λ̃c = eXcβ̃ and take the mean over all λ̃c’s to get the expected counts

4. Draw Yc from fPoisson(Y|λ̃c) to account for fundamental uncertainty if you wanna get
predicted counts, given λ̃c
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Results for Example: Poisson Model

Dependent variable:

Count of One Sided Violence

(1) (2) (3)

Government Rebel

Civil War 0.626∗∗∗ 0.222∗∗∗ 0.901∗∗∗

(0.008) (0.013) (0.011)

Autocracy 0.473∗∗∗ 0.439∗∗∗ 0.550∗∗∗

(0.011) (0.016) (0.016)

Democracy −0.066∗∗∗ −1.403∗∗∗ 0.402∗∗∗

(0.014) (0.032) (0.017)

Government −0.073∗∗∗

(0.008)

One sided Violence t-1 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.00000) (0.00001) (0.00001)

Constant 2.878∗∗∗ 3.572∗∗∗ 2.306∗∗∗

(0.015) (0.022) (0.021)

Observations 1,178 435 743
Log Likelihood −158,122.600 −65,303.790 −89,707.900
Akaike Inf. Crit. 316,257.300 130,617.600 179,425.800

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Excluding observation Rwanda 1994



Negative Binomial Model

• A limitation of the Poisson distribution is the equality of the conditional mean and
variance of y .

Var(Y|X) = E(Y|X) = λ

• Often our data are overdispersed, i.e. the variance is actually larger than the mean.

Var(Y|X) > E(Y|X)
• The consequence of overdispersion is that the standard errors are biased towards
zero (i.e., they are too small)

• We could use robust standard errors, but then we only get the mean right (very
limited!)

• Therefore, we model overdispersion, i.e. we parameterize it. This yields the the
so-called negative binomial model.
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What happens without an extra dispersion parameter?

Suppose we run a poisson when counts are …

…underdispersed, Var(Yi|Xi) = E(Yi|Xi), or overdispersed.

E(Yi|Xi) and 95% CI
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Negative Binomial Model

• The basic idea is to adopt a Poisson model for the count Yi, but to suppose that the
expected count λ∗ is itself an unobservable random variable that is Gamma
distributed with mean λ and scale (or overdispersion) parameter θ.

• Then the observed count Yi follows a negative binomial distribution:

fNegBin(yi|λi, θ) =
Γ(yi + θ)

y!Γ(θ) ×
λyii θ

θ

(λi + θ)yi+θ

• Mean: E(Yi) = λi = eXiβ

18



Negative Binomial Model

• The negative binomial model includes a parameter that can take care of the
overdispersed data structure:

Var(Yi) = λi +
1
θ
λ2i , or

Var(Yi) = λi + αλ2i

• The negative binomial model has one more parameter than the Poisson

• If α = 0 (or θ → ∞), the negative binomial model is identical to the Poisson model

• This means we can test whether the negative binomial or the Poisson model is more
appropriate for our data.
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Negative Binomial Model

• Let α = 1
θ represent the inverse of the scale parameter.

• Our null hypothesis H0 : α = 0 (”Poisson model”)

• Our alternative hypothesis Ha : α > 0.

• Compute likelihood-ratio test (LRT) from chi-square distribution with one degree of
freedom.

• In order to obtain corresponding p-value note that right-tailed p-value must be halved
since the negative binomial over-dispersion parameter is restricted to be positive
(one-sided test)
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Results for Example: Negative Binomial Model

Dependent variable:

Count of One Sided Violence

(1) (2) (3)

Government Rebel

Civil War 1.042∗∗∗ 0.903 1.012∗∗

(0.340) (0.629) (0.406)

Autocracy 0.561 0.822 0.347
(0.369) (0.703) (0.431)

Democracy 0.394 −0.322 0.580
(0.410) (0.817) (0.468)

Government −0.002
(0.296)

One sided Violence t-1 0.009∗∗∗ 0.008∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001)

Constant 1.237∗∗ 1.449 1.282∗∗

(0.526) (0.988) (0.609)

Observations 1,178 435 743
Log Likelihood −2,407.617 −718.369 −1,679.689
α 0.042∗∗∗ (0.003) 0.029∗∗∗ (0.004) 0.053∗∗∗ (0.004)
Akaike Inf. Crit. 4,827.235 1,446.738 3,369.378

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Excluding observation Rwanda 1994



Use simulated quantity of interest instead
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